首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.

  相似文献   

2.
Cancers are generally recognized as the leading cause of death and a predominant barrier to prolonging life expectancy in both developed and developing countries. Emodin is a typical anthraquinone derivative from various plants that exhibits a wide spectrum of biological activities, such as anticancer, antibacterial, hepatoprotective and anti-inflammatory activities. Much previous preclinical evidence has demonstrated that emodin exhibits reliable effects on several cancer types, including lung cancer, liver cancer, colon cancer, breast cancer, pancreatic cancer, leukemia, cervical cancer, and ovarian cancer, etc. The related molecular mechanisms corresponding to the anticancer activities of emodin are involved in the induction of apoptosis, inhibition of cell proliferation, enhanced reactive oxygen species (ROS) accumulation, and induction of autophagy, etc. In the present review, we summarized the sources, anticancer properties in vitro and in vivo, molecular mechanisms, metabolic transformation and toxicities of emodin. In addition, we also discussed the limitations of the present investigations of emodin against cancers and gave some perspectives for them, which would be beneficial for the further exploration and development of this natural compound as a clinical cancer drug.  相似文献   

3.
The Warburg effect and its cancer therapeutic implications   总被引:1,自引:0,他引:1  
Increased aerobic glycolysis in cancer, a phenomenon known as the Warburg effect, has been observed in various tumor cells and represents a major biochemical alteration associated with malignant transformation. Although the exact molecular mechanisms underlying this metabolic change remain to be elucidated, the profound biochemical alteration in cancer cell energy metabolism provides exciting opportunities for the development of therapeutic strategies to preferentially kill cancer cells by targeting the glycolytic pathway. Several small molecules capable of inhibiting glycolysis in experimental systems have been shown to have promising anticancer activity in vitro and in vivo. This review article provides a brief summary of our current understanding of the Warburg effect, the underlying mechanisms, and its influence on the development of therapeutic strategies for cancer treatment.  相似文献   

4.
Due to its potent anti-tumor activity, well-investigated pharmacokinetic properties and safety profile, disulfiram (DSF) has emerged as a promising candidate for drug repurposing in cancer therapy. Although several molecular mechanisms have been proposed for its anti-cancer effects, the precise underlying mechanisms remain unclear. In the present study, we showed that DSF inhibited proliferation of cancer cells by inducing reactive oxygen species (ROS) production, a G1 cell cycle arrest and autophagy. Moreover, DSF triggered apoptosis via suppression of the anti-apoptotic protein survivin.To elucidate the mechanisms for the anti-proliferative activities of DSF, we applied a 2-DE combined with MALDI-TOF-MS/MS analysis to identify differentially expressed proteins in breast cancer cells upon treatment with DSF. Nine differentially expressed proteins were identified among which, three candidates including calmodulin (CaM), peroxiredoxin 1 (PRDX1) and collagen type I alpha 1 (COL1A1) are involved in the regulation of the AKT signaling pathway. The results of western blot analysis confirmed that DSF inhibited p-AKT, suggesting that DSF induces its anti-tumor effects via AKT blockade. Moreover, we found that DSF increased the mRNA levels of FOXO1, FOXO3 and FOXO4, and upregulated the expression of their target genes involved in G1 cell cycle arrest, apoptosis and autophagy. Finally, DSF potentiated the anti-proliferative effects of well-known chemotherapeutic agents such as arsenic trioxide (ATO), doxorubicin, paclitaxel and cisplatin. Altogether, these findings provide mechanistic insights into the anti-growth activities of DSF.  相似文献   

5.
It is well-known that cell cycle arrest and/or death play a pivotal role in tumor progression, which has drawn a rising attention for cancer biologists due to their complex and intricate relationships. In this review, we demonstrate the recent research on oridonin, an active diterpenoid with remarkable anti-proliferative activities, and then further explore its molecular mechanisms of cell cycle arrest, apoptosis, autophagy and their cross-talks in various cancer cells, which may provide a new perspective of oridonin as a candidate anti-neoplastic drug for future cancer therapeutics.  相似文献   

6.
Abstract

Recent evidence suggests that vitamin E and its analogues, which have been used for many years as antioxidants, may not only protect cells from free radical damage but also induce apoptotic cell death in various cell types. While -tocopherol (-TOH) is mainly known as an anti-apoptotic agent, its redox-silent analogues either have no influence on cell survival (-tocopheryl acetate, -TOA), or induce apoptosis (-tocopheryl succinate, -TOS). Although precise mechanisms of apoptosis induction by -TOS remain to be elucidated, there is evidence that this process involves both the antiproliferative and membrane destabilising activities of the agent. -TOS has been shown to induce apoptosis in malignant cell lines but not, in general, in normal cells, and to inhibit tumorigenesis in vivo. These features suggest that this semi-synthetic analogue of vitamin E could be a promising antineoplastic agent.  相似文献   

7.
Indole is a versatile pharmacophore, a privileged scaffold and an outstanding heterocyclic compound with wide ranges of pharmacological activities due to different mechanisms of action. It is an superlative moiety in drug discovery with the sole property of resembling different structures of the protein. Plenty of research has been taking place in recent years to synthesize and explore the various therapeutic prospectives of this moiety. This review summarizes some of the recent effective chemical synthesis (2014–2018) for indole ring. This review also emphasized on the structure–activity relationship (SAR) to reveal the active pharmacophores of various indole analogues accountable for anticancer, anticonvulsant, antimicrobial, antitubercular, antimalarial, antiviral, antidiabetic and other miscellaneous activities which have been investigated in the last five years. The precise features with motives and framework of each research topic is introduced for helping the medicinal chemists to understand the perspective of the context in a better way. This review will definitely offer the platform for researchers to strategically design diverse novel indole derivatives having different promising pharmacological activities with reduced toxicity and side effects.  相似文献   

8.
9.
原发性肝癌是一种发生在肝脏的侵袭性肿瘤,具有极易发生转移和复发的特点。原发性肝癌主要包括肝细胞癌、肝内胆管癌、混合肝细胞胆管癌和纤维板层型肝细胞癌等。目前,手术切除、放射性和化学治疗仍是肝癌治疗的主要手段,但其特异性差、临床效果有限,肝癌患者5年总生存率仅为18%。肝癌干细胞是存在于肝癌组织中特定的细胞亚群,具有自我更新能力和强致瘤性,驱动肝癌起始、转移、耐药和复发。因此,肝癌干细胞分子标志物的鉴定及其干性维持机制的阐明,不仅能够揭示肝癌发病的分子机理,也为肝癌的分子分型、预后评估和靶向治疗奠定了理论基础。最新研究表明,5-氟尿嘧啶与CD13抑制剂联合使用,能够抑制CD13+肝癌干细胞的增殖,从而减少肿瘤体积。因此,肝癌干细胞是非常有前景的治疗靶标。文中将从分子标志物、干性维持机制及靶向治疗方面总结肝癌干细胞的最新进展。  相似文献   

10.
Colorectal cancer (CRC) accounts for about 10% of all annually diagnosed cancers and cancer-related deaths worldwide. STAT3 plays a vital role in the occurrence and development of tumours. Gracillin has shown a significant antitumour activity in tumours, but its mechanism remains unknown. The human CRC cell lines HCT116, RKO, and SW480 and immunodeficient mice were used as models to study the effects of gracillin on cell proliferation, migration and apoptosis. These were evaluated by cell viability, colony formation, wound-healing migration and cell apoptosis assays. Luciferase reporter assay, and immunostaining and western blot analyses were used to explore the specific mechanism through which gracillin exerts its effects. Gracillin significantly reduces viability and migration and stimulates apoptosis in human CRC cells. It also significantly inhibits tumour growth with no apparent physiological toxicity in animal model experiments. Moreover, gracillin is found to inhibit STAT3 phosphorylation and STAT3 target gene products. In addition, gracillin inhibits IL6-induced nuclear translocation of P-STAT3. Gracillin shows potent efficacy against CRC by inhibiting the STAT3 pathway. It should be further explored as a unique STAT3 inhibitor for the treatment of CRC.  相似文献   

11.
12.
The protein kinase family, one of the largest gene families in eukaryotes, plays an important role in regulating various cellular processes such as cell proliferation, cell death, cell cycle progression, differentiation and cell survival. Therefore, it is not surprising that the deregulation of many kinases is usually directly linked to cancer development. In all solid tumors, changes in protein kinase expression levels and activities, as well as alterations in the degree of posttranslational modifications can contribute to cancer development. Consequently, the identification of molecular targets and signaling pathways specific to cancer cells is becoming more and more important for cancer drug development and cancer therapies. Inhibition of various protein kinases has already been investigated in many pre-clinical and clinical trials targeting all stages of signal transduction, demonstrating promising results in cancer therapy. Conventional chemotherapeutics are often ineffective as well as harmful; hence a combination of both chemotherapeutics and protein kinase inhibitors may result in new and more successful therapeutic approaches. In this review we focus on protein kinases involved in different signaling pathways and their alterations in solid tumors.  相似文献   

13.
It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones ( AQQ1-5 ) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones ( AQQ2-5 ) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3 , in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ ( AAQ2 ) have been studied.  相似文献   

14.
BackgroundAlthough great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy.PurposeThis review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications.MethodsWe obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects.ResultsRepresentative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values.ConclusionThis review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.  相似文献   

15.
Liquidambar orientalis Mill., commonly called the Anatolian sweetgum or Sigla tree, is endemic to southwestern Turkey. It has been historically significant in traditional medicine. In our research, we delved into the therapeutic attributes of its oil, emphasizing its antioxidant, antimicrobial, and antitumor properties. The primary chemical constituent of the gum is styrene, accounting for 78.5 %. The gum demonstrated antioxidant capabilities in several assays, including in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). It displayed bactericidal actions against various gram-positive bacteria, such as Staphylococcus aureus, and gram-negative strains, including Escherichia coli. Additionally, the oil showcased potent antitumor effects against breast (MDA-MB-231), lung (A549), and prostate (PC3) cancer cell lines. These effects were found to be both time- and dose-dependent. L. orientalis Mill. oil showed the best antitumor activity against breast, lung, and prostate cancer cell lines after the 24 h and 48 h treatment. Its oil might induce autophagy in the PC3 prostate cancer cell line, whereas its cytotoxicity against MDA-MB-231 and A549 cancer cell lines might not be correlated with autophagy or apoptosis pathways. In conclusion, the oil from the Sigla tree offers promising therapeutic potential and warrants further exploration.  相似文献   

16.
Chemoprevention of cancer via herbal and dietary supplements is a logical approach to combating cancer and currently it is an attractive area of research investigation. Over the years, isothiocyanates, such as sulforaphane (SFN) found in cruciferous vegetables, have been advocated as chemopreventive agents, and their efficacy has been demonstrated in cell lines and animal models. In vivo studies with SFN suggest that in addition to protecting normal healthy cells from environmental carcinogens, it also exhibits cytotoxicity and apoptotic effects against various cancer cell types. Among several mechanisms for the chemopreventive activity of SFN against chemical carcinogenesis, its effect on drug-metabolizing enzymes that cause activation/neutralization of carcinogenic metabolites is well established. Recent studies suggest that SFN exerts its selective cytotoxicity to cancer cells via reactive oxygen species-mediated generation of lipid peroxidation products, particularly 4-hydroxynonenal (HNE). Against the background of the known biochemical effects of SFN on normal and cancer cells, in this article we review the underlying molecular mechanisms responsible for the overall chemopreventive effects of SFN, focusing on the role of HNE in these mechanisms, which may also contribute to its selective cytotoxicity to cancer cells.  相似文献   

17.
A.O. Mueck  H. Seeger 《Steroids》2010,75(10):625-80
In the last decade the endogenous estradiol metabolite, 2-methoxyestradiol (2ME), has gained more and more interest due to its marked anticancerogenic properties and possible cardiovascular benefits, as shown in numerous animal and experimental investigations. Some promising results in terms of the usage of 2ME as a therapeutic agent were obtained by various clinical studies in patients with breast cancer and prostate cancer. However, one main problem appears to be the bioavailability of 2ME, therefore new formulations are now in the test phase. In this review, the most important aspects of the biology and molecular mechanisms of 2ME are summarized.  相似文献   

18.
Lichens are symbiotic associations between fungi and a photosynthetic alga and/or cyanobacteria. Lichenized fungi have been found to produce a wide array of secondary metabolites, most of which are unique to the lichenized condition. These secondary metabolites have shown an impressive range of biological activities including antibiotics, antifungal, anti-HIV, anticancer, anti-protozoan, etc. This review focuses primarily on the antibiotic and anticancer properties of lichen secondary chemicals. We have reviewed various publications related to antibiotic and anticancer drug therapies emphasizing results about specific lichens and/or lichen compounds, which microbes or cancer cells were involved and the main findings of each study. We found that crude lichen extracts and various isolated lichen compounds often demonstrate significant inhibitory activity against various pathogenic bacteria and cancer cell lines at very low concentrations. There were no studies examining the specific mechanism of action against pathogenic bacteria; however, we did find a limited number of studies where the mechanism of action against cancer cell lines had been explored. The molecular mechanism of cell death by lichen compounds includes cell cycle arrest, apoptosis, necrosis, and inhibition of angiogenesis. Although lichens are a reservoir for various biologically active compounds, only a limited number have been tested for their biological significance. There is clearly an urgent need for expanding research in this area of study, including in depth studies of those compounds which have shown promising results as well as a strong focus on identifying specific mechanisms of action and extensive clinical trials using the most promising lichen based drug therapies followed by large scale production of the best of those compounds.  相似文献   

19.
Abstract

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

20.
Cancer, second only to heart disease, is the leading cause of death in the US. Although progress has been made in the early detection of cancer and in improvements of cancer therapies, the ability to provide long-term survival has been limited. Increasing evidence suggests that a minute, biologically unique population of cancer stem cells (SCs) exists in most neoplasms and may be responsible for tumor initiation, progression, metastasis, and relapse. Characterization of cancer SCs has led to the identification of key cellular activities that may make cancer SCs vulnerable to therapeutic interventions that target drug-effluxing capabilities, stem cell pathways, anti-apoptotic mechanisms, and induction of differentiation. Phytochemicals, compounds made from fruits, vegetables, and grains, possess anti-cancer properties and represent a promising therapeutic approach for the prevention and treatment of many cancers. This review summarizes the evidence for the cancer SC hypothesis and discusses the potential mechanisms by which phytochemicals might target cancer SCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号