首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine hybridoma cells that produce monoclonal antibody directed against human fibronectin have been cultured in VITAFIBER II and VITAFIBER V hollow fiber bioreactors using defined, serum-free WRC 935 medium. During a two-week growth period, following inoculation of the bioreactors, the cells proliferated to an extent where the bioreactor was filled with cultured cells. Using a 5 sq. ft. VITAFIBER V bioreactor, over 15 grams of antibody were produced during the 40 days of the experiment. This antibody was greater than 95% IgG. During the production period, this packed mass of cells produced 579 +/- 15 mg IgG per day. Because the medium is formulated for air equilibration and high cell densities, WRC 935 medium is especially useful for production of gram quantities of monoclonal antibodies using continuous feed hollow fiber bioreactor cell culture systems.  相似文献   

2.
A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor? using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed‐batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell‐specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed‐batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed‐batch and 28× more in a 1‐month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013  相似文献   

3.
The total operating costs of small-scale monoclonal antibody production were calculated for two different upstream options and general downstream procedure based on protein A chromatography. The upstream options were a spin-filter equipped stirred-tank bioreactor (STR) and a hollow fiber bioreactor (HFB). Both the bioreactors were operated in perfusion mode. The total operating costs of the processes were 6,900 €/g for STR option and 6,400 €/g for the HFB option. In the both systems, the costs were dominated by expenses derived from the downstream section (almost 80%) that was almost identical in the both systems. In the upstream section, the investment depreciation was the largest cost item. The lower total costs of the HFB option were a result of lower investment costs and more concentrated product that led into savings also in downstream section. This study brings out the HFB as on viable alternative for stirred-tank bioreactor, especially in small-scale diagnostic monoclonal antibody production.  相似文献   

4.
Robust cell retention devices are key to successful cell culture perfusion. Currently, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) are most commonly used for this purpose. TFF, however, suffers from poor fouling mitigation, which leads to high filtration resistance and product retention, and ATF suffers from long residence times and cell accumulation. In this work, we propose a filtration system for alternating tangential flow filtration, which takes full advantage of the fouling mitigation effects of alternating flow and reduces cell accumulation. We have tested this novel setup in direct comparison with the XCell ATF® as well as TFF with a model feed comprising yeast cells and bovine serum albumin as protein at harsh permeate to feed flow conditions. We found that by avoiding the dead-end design of a diaphragm pump, the proposed filtration system exhibited a reduced filtration resistance by approximately 20% to 30% (depending on feed rate and permeate flow rate). A further improvement of the novel setup was reached by optimization of phase durations and flow control, which resulted in a fourfold extension of process duration until hollow fiber flow channel blockage occurred. Thus, the proposed concept appears to be superior to current cell retention devices in perfusion technology.  相似文献   

5.
The use of bioreactors coupled to membrane-based perfusion systems enables very high cell and product concentrations in vaccine and viral vector manufacturing. Many virus particles, however, are not stable and either lose their infectivity or physically degrade resulting in significant product losses if not harvested continuously. Even hollow fiber membranes with a nominal pore size of 0.2 µm can retain much smaller virions within a bioreactor. Here, we report on a systematic study to characterize structural and physicochemical membrane properties with respect to filter fouling and harvesting of yellow fever virus (YFV; ~50 nm). In tangential flow filtration perfusion experiments, we observed that YFV retention was only marginally determined by nominal but by effective pore sizes depending on filter fouling. Evaluation of scanning electron microscope images indicated that filter fouling can be reduced significantly by choosing membranes with (i) a flat inner surface (low boundary layer thickness), (ii) a smooth material structure (reduced deposition), (iii) a high porosity (high transmembrane flux), (iv) a distinct pore size distribution (well-defined pore selectivity), and (v) an increased fiber wall thickness (larger effective surface area). Lowest filter fouling was observed with polysulfone (PS) membranes. While the use of a small-pore PS membrane (0.08 µm) allowed to fully retain YFV within the bioreactor, continuous product harvesting was achieved with the large-pore PS membrane (0.34 µm). Due to the low protein rejection of the latter, this membrane type could also be of interest for other applications, that is, recombinant protein production in perfusion cultures.  相似文献   

6.
High cell density perfusion process of antibody producing CHO cells was developed in disposable WAVE Bioreactor? using external hollow fiber filter as cell separation device. Both “classical” tangential flow filtration (TFF) and alternating tangential flow system (ATF) equipment were used and compared. Consistency of both TFF‐ and ATF‐based cultures was shown at 20–35 × 106 cells/mL density stabilized by cell bleeds. To minimize the nutrients deprivation and by‐product accumulation, a perfusion rate correlated to the cell density was applied. The cells were maintained by cell bleeds at density 0.9–1.3 × 108 cells/mL in growing state and at high viability for more than 2 weeks. Finally, with the present settings, maximal cell densities of 2.14 × 108 cells/mL, achieved for the first time in a wave‐induced bioreactor, and 1.32 × 108 cells/mL were reached using TFF and ATF systems, respectively. Using TFF, the cell density was limited by the membrane capacity for the encountered high viscosity and by the pCO2 level. Using ATF, the cell density was limited by the vacuum capacity failing to pull the highly viscous fluid. Thus, the TFF system allowed reaching higher cell densities. The TFF inlet pressure was highly correlated to the viscosity leading to the development of a model of this pressure, which is a useful tool for hollow fiber design of TFF and ATF. At very high cell density, the viscosity introduced physical limitations. This led us to recommend cell densities under 1.46 × 108 cell/mL based on the analysis of the theoretical distance between the cells for the present cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:754–767, 2013  相似文献   

7.
We have produced large quantities of murine monoclonal antibodies for in vivo human clinical trials using hollow fiber bioreactors (HFBRs). Thirty-three different hybridoma cell lines have been evaluated in various HFBR systems. Monoclonal antibody (Ab) productivity is highly dependent on the intrinsic secretory rate of each cell line. Other factors that affect Ab production include capillary membrane molecular weight cutoff, and HFBR design. Studies comparing HFBRs to static and suspension culture systems revealed similar Ab productivity. An advantage of the HFBR is that the Ab is concentrated in the extracapillary space, simplifying downstream processing.  相似文献   

8.
The multiplication and antibody production of murine hybridoma cells cultured on five different polymer membranes were tested and compared with conventional tissue culture polystyrene (TCPS). Membranes were prepared from polyacrylonitrile (PAN) and acrylonitrile copolymerized with N-vinylpyrrolidone (NVP20, NVP30), Na-methallylsulfonate (NaMAS) and N-(3-amino-propyl-methacrylamide-hydrochloride) (APMA). Cell number and antibody concentration were quantified as criteria for viability and productivity. Adhesion of hybridoma cells was characterized by vital and scanning electron microscopy. The results suggest that a strong adhesion of cells, observed on APMA and TCPS, increased cell growth but reduced monoclonal antibody production. In contrast membranes with lowered adhesivity such as NVP20 provided favourable conditions for monoclonal antibody production. In addition it was shown that this membrane also possessed a minor fouling as indicated by the low decrease of water flux across the membrane after protein adsorption. It was concluded that NVP20 could be a suitable material for the development of hollow fibre membranes for bioreactors.  相似文献   

9.
The heterogeneous nature of hollow fiber reactors for cell cultivation requires special considerations for proper design and operation. Downstream concentration of high-molecular-weight proteins has been measured in the shell side of ultrafiltration hollow fiber bioreactors. This distribution resulted from shell-side convective fluxes which caused a concentration polarization of proteins retained by the ultrafiltration membranes (nominal 3 x 10(4) D cutoff). Measurements of the axial hybridoma cell distribution also revealed a downstream concentration of viable cells during the first month of perfusion operation. This is believed to result from the shell-side convective flow and its influence on the inoculum and high-molecular-weight growth factor distributions. The heterogeneous distribution of cells leads to reduced cell numbers and reactor productivities. The mechanisms responsible for these phenomena have been investigated and their implications in process design and operation are considered. The heterogeneous protein and cell distributions on the shell side of hollow fiber bioreactors have been reduced significantly by periodic alternation of the direction of recycle flow and the reactor antibody productivities have been doubled.  相似文献   

10.
Summary A novel sedimentation method with a spiral decanter was utilized with a bioreactor for propagation of hybridoma cells at high densities. The live cell concentration was increased and cell lysis was greatly reduced in this system compared to a tangential flow hollow fiber perfusion system. The specific monoclonal antibody productivity was higher than that obtained using a hollow fiber perfusion system or in a batch culture. Cell specific productivity usually declined over time in long term experiments. The use of the sedimentation device eliminated progressive deterioration of reactor performance usually associated with a perfusion device.  相似文献   

11.
A perfusion culture system was developed to investigate the oxygenation of high-density hybridoma cell cultures. The culture system was composed of a stirred-tank bioreactor and an external microfiltration hollow fiber cartridge for medium perfusion. Cell growth and antibody production were examined with large bubble ( approximately 5 mm in diameter), micron-sized bubble ( approximately 80 mum in diameter), and silicone tubing oxygenation techniques. Comparable cell growth and monoclonal antibody (MAb) production were found for both the micron-sized and large oxygenation methods, provided that large bubbles were enriched with pure oxygen. Relatively low cell growth and MAb production were attained with the bubble-free silicone tubing oxygenation. It is concluded that direct bubble oxygenation can be applied successfully in high-density animal cell cultures, provided that the culture medium is supplemented with Pluronic F-68. The accumulation of ammonia in the culture medium rather than oxygen limitation was found to be one of the possible problems that eventually inhibited cell growth. This and the fouling of the filtration cartridge during long-term cultivation were found to be more problematic than simple bubble oxygenation of high-density cell culture. The micron-sized bubble oxygenation method is highly recommended for high-density animal cell cultures, provided that Pluronic F-68 is supplemented into the culture medium. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
This article reports the results obtained from comparison of internal spin filter (ISF) and alternating flow filtration (ATF) as cell retention systems, regarding cell growth, volumetric perfusion rate, cell specific perfusion rate and cell productivity in the fermentation process. As expected we were able to reach higher cell densities and to achieve longer runs since ATF systems are known to be less affected by fouling. Volumetric production of the reactor using the ATF system was 50‐70% higher than the production achieved using the ISF due to higher cell density and a two‐fold increase in the perfusion rate. On the other hand, downstream processing performances were evaluated regarding chromatographic steps yields and productivity and quality attributes of the purified materials. Similar results were obtained for all evaluated systems. The fact that we were able to achieve a 2 working volumes (WV)/day perfusion rate using an ATF system as cell retention device allowed us to virtually double the WV of a 25 L reactor. These results constitute valuable data for the optimization of recombinant protein production in perfusion processes since a two‐fold increase in the average production of a manufacturing facility could be easily achieved as long as downstream scale up is possible. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1010–1014, 2017  相似文献   

13.
Batch cell cultures of a human-human hybridoma line in a convective flow dominant intercalated-spiral altetnate-dead-ended hollow fiber are compared with those using conventional axial-flow hollow fiber bioreactors and a stirred-tank bioreactor. Relatively short-term fed-batch and perfusion cell cultures were also employed for the intercalated-spiral bioreactor. When operating conditions of a batch intercalated-spiral bioreactor were properly chosen, the cell growth and substrate consumption paralleled that of a batch stirred-tank culture. The results verified the premise of the intercalated-spiral hollow fiber bioreactor that nutrient transport limitations can be eliminated when the convective flux through the extracapillary space is sufficiently high.(c) John Wiley & Sons, Inc.  相似文献   

14.
Alternating tangential flow (ATF) filtration has been used with success in the Biopharmaceutical industry as a lower shear technology for cell retention with perfusion cultures. The ATF system is different than tangential flow filtration; however, in that reverse flow is used once per cycle as a means to minimize fouling. Few studies have been reported in the literature that evaluates ATF and how key system variables affect the rate at which ATF filters foul. In this study, an experimental setup was devised that allowed for determination of the time it took for fouling to occur for given mammalian (PER.C6) cell culture cell densities and viabilities as permeate flow rate and antifoam concentration was varied. The experimental results indicate, in accordance with D'Arcy's law, that the average resistance to permeate flow (across a cycle of operation) increases as biological material deposits on the membrane. Scanning electron microscope images of the post‐run filtration surface indicated that both cells and antifoam micelles deposit on the membrane. A unique mathematical model, based on the assumption that fouling was due to pore blockage from the cells and micelles in combination, was devised that allowed for estimation of sticking factors for the cells and the micelles on the membrane. This model was then used to accurately predict the increase in transmembane pressure during constant flux operation for an ATF cartridge used for perfusion cell culture. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1291–1300, 2014  相似文献   

15.
A comparison of cell yields and monoclonal antibody productivity from the same hybridoma has been made in a wide range of cell bioreactors including both batch and continuous perfusion cultures. The most productive systems were based on porous microcarriers in fixed and fluidised beds which can be operated with a high degree of efficiency and reliability from the physico-chemical engineering point of view. Further improvements should be possible by improving the physiological environment in dense cell cultures, as indicated by the preliminary studies that are described. These include experimental data showing the relationship between monoclonal antibody production rates with glucose, glutamine, ammonia, and oxygen levels in microporous beads. The results strongly indicate that perfusion processes that are scaleable in both volume and cell density can significantly reduce production costs. Manufacturers of biologicals from animal cells now have a choice between the proven batch-type processes and reliable perfusion systems based on microporous beads.  相似文献   

16.
On-line, "real-time" monitoring of product concentration is important for mammalian cell culture fermentation. The continuous measurement of monoclonal antibodies allows for instantaneous determination of cell productivity and effective manipulation of the fermentor operating conditions for optimal production. This article will present the evaluation and application of a BioCad/RPM system (Per Septive Biosystems) for rapid analysis of lgG concentration for hybridoma cell cultivation. Several commercial crossflow filtration devices are tested for low protein retention and fouling properties. A protein G column is used successfully for analyzing about 400 samples of lgG(1), without significant loss in separation efficiency. The Immuno Detection system is integrated into a computer-controlled 15-L fermentor. This fermentor could be operated in batch and perfusion modes with cell densities up to 20 million cells/mL. A continuous cell-free sample stream obtained by a hollow fiber filter system is introduced to the BioCad/RPM for analysis. The speed of this system allows for real-time monitoring even at high densities with fast dynamics. A murine hybridoma cell (A10G10) is cultivated in batch and continuous reactors and antibody concentration is measured continuously with complete sterility. The results are compared to offline measurements with good agreement. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
A murine hybridoma line (Zac3), secreting an IgA monoclonal antibody, was cultivated in different systems: a BALB/c mouse, a T-flask, a stirred-tank bioreactor and a hollow fiber reactor. These systems were characterized in terms of cell metabolism and performances for IgA production. Cultures in T-flask and batch bioreactor were found to be glutamine-limited. Ammonia and lactate were produced in significant amounts. IgA productivity was found to be constant and growth associated. Final IgA concentration was similar in both systems. In fed-batch cultures, supplemented with glutamine and glucose, maximum viable cell concentration was increased by 60% and final IgA concentration by 155%. The hollow fiber reactor was able to produce very large amounts of IgA at very high concentrations, similar to the value found in ascites fluid. The productivity ofZac3 is similar to the values reported for IgG-producing cell lines.  相似文献   

18.
Perfusion culture is often performed with micro-sparger to fulfill the high oxygen demand from the densified cells. Protective additive Pluronic F-68 (PF-68) is widely used to mitigate the adverse effect in cell viability from micro-sparging. In this study, different PF-68 retention ratio in alternating tangential filtration (ATF) columns was found to be crucial for cell performance of different perfusion culture modes. The PF-68 in the perfusion medium was found retained inside the bioreactor when exchanged through ATF hollow fibers with a small pore size (50 kD). The accumulated PF-68 could provide sufficient protection for cells under micro-sparging. On the other hand, with large-pore-size (0.2 μm) hollow fibers, PF-68 could pass through the ATF filtration membranes with little retention, and consequently led to compromised cell growth. To overcome the defect, a PF-68 feeding strategy was designed and successfully verified on promoting cell growth with different Chinese hamster ovary (CHO) cell lines. With PF-68 feeding, enhancements were observed in both viable cell densities (20%–30%) and productivity (~30%). A threshold PF-68 concentration of 5 g/L for high-density cell culture (up to 100 × 106 cells/mL) was also proposed and verified. The additional PF-68 feeding was not observed to affect product qualities. By designing the PF-68 concentration of perfusion medium to or higher than the threshold level, a similar cell growth enhancement was also achieved. This study systematically investigated the protecting role of PF-68 in intensified CHO cell cultures, shedding a light on the optimization of perfusion cultures through the control of protective additives.  相似文献   

19.
Production of monoclonal antibody against hepatitis B surface antigen was carried out by perfusion culture coupled with a selective removal system for ammonium ion. The removal system is composed of three sub-systems namely, cell separation by cross-flow ceramic filter, dialysis by hollow fiber module and ion-exchange by zeolite A-3 packed bed column. The ammonium ion concentration in the culture broth was effectively maintained below the inhibitory level, and the viable cell density reached 2.5×107 cells ml–1 which was three times that of conventional perfusion cultures. The monoclonal antibody accumulated to a concentration as high as 26.3×105 mIU–1. This is already almost half of the amount producedin vivo. The numerical investigation of the ammonium ion removal system showed the possibility to improve much more the performance of this perfusion cultivation system.  相似文献   

20.
Although several compelling benefits for bioprocess intensification have been reported, the need for a streamlined integration of perfusion cultures with capture chromatography still remains unmet. Here, a robust solution is established by conducting tangential flow filtration-based perfusion with a wide-surface pore microfiltration membrane. The resulting integrated continuous bioprocess demonstrated negligible retention of antibody, DNA, and host cell proteins in the bioreactor with average sieving coefficients of 98 ± 1%, 124 ± 28%, and 109 ± 27%, respectively. Further discussion regarding the potential membrane fouling mechanisms is also provided by comparing two membranes with different surface pore structures and the same hollow fiber length, total membrane area, and chemistry. A cake-growth profile is reported for the narrower surface pore, 0.65-µm nominal retention perfusion membrane with final antibody sieving coefficients ≤70%. Whereas the sieving coefficient remained ≥85% during 40 culture days for the wide-surface pore, 0.2-µm nominal retention rating membrane. The wide-surface pore structure, confirmed by scanning electron microscopy imaging, minimizes the formation of biomass deposits on the membrane surface and drastically improves product sieving. This study not only offers a robust alternative for integrated continuous bioprocess by eliminating additional filtration steps while overcoming sieving decay, but also provides insight into membranes' fouling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号