首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemical study of the methanol extract of the aerial parts of Achyranthes aspera led to the isolation of four new flavonoid C-glycosides ( 1 – 4 ) along with eight known analogs ( 5 – 12 ). Their structures were elucidated by a combination of spectroscopic data analysis, HR-ESI-MS, 1D and 2D NMR spectra. All the isolates were evaluated their NO production inhibitory activity in LPS-activated RAW264.7 cells. Compounds 2 , 4 , and 8 – 11 showed significant inhibition with IC50 values ranging from 25.06 to 45.25 μM, compared to that of the positive control compound, L-NMMA, IC50 value of 32.24 μM, whereas the remaining compounds were weak inhibitory activity with IC50 values over 100 μM. This is the first report of 7 from Amaranthaceae family, and 11 from the genus Achyranthes.  相似文献   

2.
A new isopropyl chromone ( 1 ) and a new flavanone glucoside ( 2 ) together with eleven known compounds ( 3–13 ) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one ( 1 ), 5,7-dihydroxyflavanone 7-O-β-D-(6′′-O-galloylglucopyranoside) ( 2 ), strobopinin ( 3 ), demethoxymatteucinol ( 4 ), pinocembrin-7-O-β-D-glucopyranoside ( 5 ), (2S)-hydroxynaringenin-7-O-β-D-glucopyranoside ( 6 ), afzelin ( 7 ), quercetin ( 8 ), kaplanin ( 9 ), endoperoxide G3 ( 10 ), grasshopper ( 11 ), vomifoliol ( 12 ), litseagermacrane ( 13 ) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1 , 2 , 5 , 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34 μM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98 μM, compared to that of the positive control, NG-monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00 μM.  相似文献   

3.
We recently reported that hyperthyroidism affects the heart response to ischemia/reperfusion. A significant tachycardia during reperfusion was associated with an increase in the oxidative stress of hearts from T3-treated animals. In the present study we checked the possible role of nitric oxide (NO) in this major stress induced by the hyperthyroid state. We compared the functional recovery from ischemia/reperfusion of Langendorff preparations from euthyroid (E) and hyperthyroid (H, ten daily intraperitoneal injections of T3, 10 μg/100 g body weight) rats, in the presence and in the absence of 0.2 mM Nω-nitro-L-arginine (L-NNA). At the end of the ischemia/reperfusion protocol (10 min preischemic perfusion, 20 min global ischemia, 30 min reperfusion) lipid peroxidation, antioxidant capacity (CA) and susceptibility to in vitro oxidative stress were determined on heart homogenates. The main effect of hyperthyroidism on the reperfusion functional response was confirmed to be a strong tachycardic response (154% recovery at 25 min reperfusion) accompanied by a low recovery in both left ventricular diastolic pressure (LVDP) and left ventricular dP/dtmax. This functional response was associated with a reduction in CA and an increase in both lipid peroxidation and susceptibility to oxidative stress. Perfusion of hearts with L-NNA per se had small but significant negative chronotropic and positive inotropic effects on preischemic performance of euthyroid rat hearts only. More importantly, L-NNA perfusion completely blocked the reperfusion tachycardic response in the hyperthyroid rats. Concomitantly, myocardium oxidative state (lipid peroxidation, CA and in vitro susceptibility to oxidative stress) of L-NNA perfused hearts was similar to that of E animals. These results suggest that the higher reperfusion-induced injury occurring in hyperthyroid animals is associated with overproduction of nitric oxide.  相似文献   

4.
Four undescribed phenolic glycosides including three stilbene derivatives ( 1 and 3 ) and sodium salt of 3 ( 2 ), and a chalcone glycoside ( 4 ), together with thirteen known compounds ( 5 – 17 ) were isolated from the leaves of Syzygium attopeuense (Gagnep.) Merr. & L.M.Perry. Their chemical structures were elucidated to be (Z)-gaylussacin ( 1 ), 6′′-O-galloylgaylussacin sodium salt ( 2 ), 6′′-O-galloylgaylussacin ( 3 ), 4′-O-[β-D-glucopyranosyl-(1→6)-glucopyranosyl]oxy-2′-hydroxy-6′-methoxydihydrochalcone ( 4 ), gaylussacin ( 5 ), pinosilvin 3-O-β-D-glucopyranoside ( 6 ), myricetin-3-O-(2′′-O-galloyl)-α-L-rhamnopyranoside ( 7 ), myricetin-3-O-(3′′-O-galloyl)-α-L-rhamnopyranoside ( 8 ), myricetin-3-O-α-L-rhamnopyranoside ( 9 ), quercitrin ( 10 ), myricetin-3-O-β-D-glucopyranoside ( 11 ), myricetin-3-O-β-D-galactopyranoside ( 12 ), quercetin 3-O-α-L-arabinopyranoside ( 13 ), myricetin-3-O-2′′-O-galloyl)-α-L-arabinopyranoside ( 14 ), (+)-gallocatechin ( 15 ), (−)-epigallocatechin ( 16 ), and 3,3’,4’-trimethoxyellagic acid 4-O-β-D-glucopyranoside ( 17 ) by the analysis of HR-ESI-MS, 1D and 2D NMR spectra in comparison with the previously reported data. Compounds 1–3 , 5 , and 6 significant inhibition of NO production in LPS-activated RAW264.7 cells, with IC50 values ranging from 18.37±1.38 to 35.12±2.53 μM, compared to a positive control (dexamethasone) with an IC50 value of 15.37±1.42 μM.  相似文献   

5.
Background : A very high rate of resistance causes health-care-associated and community-acquired infections. E. coli is one of the nine pathogens of highest concern to most of the antibiotics and other class of antimicrobials. Objective : The objective of the present study is to develop novel thiophene derivatives using 2D QSAR and in silico approach for E. coli resistance. Methods : Substituted thiophene series reported by Nishu Singla et al., were taken for QSAR analysis. From the results, a set of 15 new compounds were designed. A complete in silico analysis has been done using PADEL, Autodock vina, Swiss ADME, Protox II software. Results : The designed compounds obey the Lipinski's rule of five and were known to have excellent inhibitory action (pIC50 values −0.87 to −1.46) which is similar to the most active compound of the data set (pIC50 −0.69) taken for the study. The bioavailability score (0.65) with no toxicity representing that the designed compounds are suitable for oral administration. Conclusion : The designed compounds are inactive for mutagenicity and cytotoxicity and ADMET studies states that these molecules are likely to be orally bioavailable and could be easily transported, diffused, and absorbed. So, the designed compounds will definitely serve as a lead antibacterial agent for E. coli resistance.  相似文献   

6.
Fifteen constituents, including one new lignan (schisandroside E) and one new terpenoid (schisandenoid A) as well as nine known lignans and four known terpenoids, were isolated from Schisandra chinensis leaves. The structures of schisandroside E and schisandenoid A were established by entirely meticulous spectroscopic analysis (NMR, MS, CD, IR and UV). All compounds were tested for cytotoxicity against MGC‐803, Caco‐2 and Ishikawa cell lines. Some compounds showed strong cytotoxicity against these three cancer cell lines with IC50<1 μm .  相似文献   

7.
Excised leaves of kidney bean (Phaseolus vulgaris) were used to investigate the mechanism of NO generation under UV-B stress. We showed that two signaling molecules, NO and H2O2, were produced in the irradiated leaves. NO release was blocked by LNNA, an inhibitor of NOS. Application of CAT (EC 1.11.1.6) not only effectively eliminated H2O2 in the leaves, but also inhibited the activity of NOS and the emission of NO. In contrast, treatment with exogenous H2O2 increased both of those events. Therefore, we suggest that, under UV-B stress, NO production is mediated by H2O2 through greater NOS activity.  相似文献   

8.
Phytochemical study on the leaves of Amentotaxus yunnanensis led to the isolation of seventeen phenolic compounds including sixteen neolignans and lignans, and one flavone glycoside. Three among the isolates were previously unreported neolignans and named as amenyunnaosides A–C, respectively. Their structures were elucidated by extensive analyses of HR-ESI-MS, 1D and 2D NMR, and ECD spectra. The isolated neolignans potentially inhibited NO production in LPS-activated RAW264.7 cells with their IC50 values ranging from 11.05 to 44.07 μM, compared to that of the positive control compound, dexamethasone, IC50 value of 16.93 μM. Additionally, amenyunnaoside A dose-dependently reduced production of IL-6 and COX-2 but did not effect to that of TNF-α at concentrations of 0.8, 4, and 20 μM.  相似文献   

9.
The work is focused on the design of drugs that prevent and treat diabetes and its complications. A novel class of stilbene derivatives were prepared by coupling NO donors of alkyl nitrate and were fully characterised by NMR and other techniques. These compounds were tested in vitro activity, including α-glucosidase inhibitory activity, aldose reductase (AR) inhibitory activity and advanced glycation end products (AGEs) formation inhibitory activity. A class of modified compounds could play a significant effect for treatment of diabetic complications. Target compounds 3e and 7c offered a potential drug design concept for the development of therapeutic or preventive agents for diabetes and its complications.  相似文献   

10.
Six new derivatives of Boc-L -Tyr(Me)-OH have been prepared, with the following substituents at ring position 3: −CO2Me, −CO2Et, −CHO, −CH2OH, −CH2OBzl and −(E)−CH=NOH. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci.3: 354–360 No. of Figures: 2. No. of Tables: 1. No. of References: 16  相似文献   

11.
Neuronal nitric oxide synthase (nNOS) was purified on DEAE-Sepharose anion-exchange in a 38% yield, with 3-fold recovery and specific activity of 5 µmol.min?1.mg?1. The enzyme was a heterogeneous dimer of molecular mass 225?kDa having a temperature and pH optima of 40°C and 6.5, Km and Vmax of 2.6 μM and 996 nmol.min?1.ml?1, respectively and was relatively stable at the optimum conditions (t½?=?3?h). β-Amyloid peptide fragments Aβ17–28 was the better inhibitor for nNOS (Ki?=?0.81 µM). After extended incubation of nNOS (96?h) with each of the peptide fragments, Congo Red, turbidity and thioflavin-T assays detected the presence of soluble and insoluble fibrils that had formed at a rate of 5?nM.min?1. A hydrophobic fragment Aβ17–21 [Leu17 – Val18 – Phe19 – Phe20 – Ala21] and glycine zipper motifs within the peptide fragment Aβ17–35 were critical in binding and in fibrillogenesis confirming that nNOS was amyloidogenic catalyst.  相似文献   

12.
A chemical investigation of K. heteroclite led to isolation of two new dibenzocyclooctadienes ( 1 and 2 ) together with 14 known compounds ( 3 – 16 ) by using multiple chromatographic techniques. New compounds ( 1 and 2 ) were obtained and identified by spectroscopic methods (HR-ESI-MS, 1D and 2D NMR, and ECD) as well as by comparison of their experimental data with those reported in the literatures. All the isolates were evaluated for their ability to modulate TNF-α production in lipopolysaccharide (LPS) stimulated RAW264.7 cells. Among them, compound 5 displayed the most inhibition against tumor necrosis factor (TNF)-α production with IC50 value of 6.16±0.14 μM. Whereas, compounds ( 1 , 3 , and 6 ) showed the significant inhibition (IC50 values ranging from 9.41 to 14.54 μM), and compounds ( 2 , 4 , 9 , 10 , 13 , 15 , and 16 ) exhibited moderate inhibition (IC50 values ranging from 19.27 to 40.64 μM) toward TNF-α production, respectively.  相似文献   

13.
Inhibiting nitric oxide (NO) or its production is found to be of therapeutic benefit. To discover natural small molecule inhibitors of NO production, a bioassay- and LC/MS-guided chemical investigation was done on the metabolites of endophytic fungus isolated from fresh Piper nigrum fruits. The isolated pure strain was identified as Penicillium polonicum by 16S rDNA sequence comparison. The culture broth extract of P. polonicum (EEPP) exhibited a significant reduction of NO production (Griess method) in LPS-stimulated RAW 264.7 cells (P<0.0001). To understand the chemical constituents of bioactive EEPP, column chromatography and p-TLC studies were carried out, which yielded eight pure compounds. They were characterised as botryosphaeridione ( 1 ), 3-(3,5-di-tert-butyl-4-hydroxy)phenylpropionic acid ( 2 ), variabilone ( 3 ), 2,4-di-tert-butylphenol ( 4 ), indole-3-carboxylic acid ( 5 ), tyrosol ( 6 ), ethyl ferulate ( 7 ) and a new lignan ( 8 ) based on the spectral analysis. The structure elucidation of the new lignan, named polonilignan ( 8 ), was based on HR-MS, 1H- & 13C-NMR, H−H COSY, HSQC and HMBC spectra. Compounds 2 , 4 , 5 and 6 showed a significant decrease (P<0.0001) in the production of NO in LPS-induced RAW 264.7 cells. Tyrosol ( 6 ) and indole-3-carboxylic acid ( 5 ) controlled nitrite release with IC50 values of 22.84 and 55.01 μM, respectively. This is the first report of (i) P. polonicum as an endophytic fungus of pepper fruits, (ii) isolation of compounds 1 – 8 except 6 from P. polonicum culture broth extract and (iii) NO inhibition effect of 2 , 4 , 5 and 6 .  相似文献   

14.
The free radical, nitric oxide (√NO), is responsible for a myriad of physiological functions. The ability to verify and study √NO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of √NO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of √NO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of √NO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of √NO in vivo. In this paper, we present data comparing several proline derived iron–dithiocarbamate complexes with the more commonly used spin traps for √NO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of √NO with these Fe2+(L)2 complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   

15.
Reactive nitrogen intermediates are synthesized by activated macrophages. These molecules, and nitrous anhydride (N2O3) in particular, are known to be potent nitrosylating species. We investigated the role of macrophage-derived N2O3 in extracellular nitrosylation. We used dilution experiments to demonstrate the intracellular production of N2O3 and its export into the extracellular medium, with a rate constant kex = 6.8 × 106 M s−1. The kinetics of the competition between extracellular hydrolysis of N2O3 and its reaction with added glutathione were also studied. We obtained a value of the rate constant kGSH for the latter reaction of 4.4 × 107 M−1 s−1, consistent with earlier determinations in cell-free systems. The implications of these results in human albumin nitrosylation were investigated. Nitrosylated albumin was detected in activated macrophages supernatants using an anti-NO-acetylated cysteine antibody. It was estimated that 10% of N2O3 produced by activated cells participate in extracellular nitrosylation. N2O3 thus appears to be a new effector molecule of the immune system, as an agent for the nitrosylation of albumin, the main nitric oxide carrier in vivo.  相似文献   

16.
Objective and Methods Endothelium produces oxygen-derived free radicals which play a major role in vessel wall physiology and pathology. Whereas NO· production from endothelium has been extensively characterized, little is known about endothelium-derived O2. In the present study, we determined the O2 production of bovine aortic endothelial cells (BAEC) using the spin trap 5,5-dimethyl-1 pyrroline-N-oxide (DMPO) and electron spin resonance (ESR) spectroscopy.

Results An ESR adduct DMPO-OH detected in the supernatant of BAEC after stimulation with the calcium ionophore A23187 originated from the trapping of extracellular O2, because coincubation with superoxide dismutase (30 U/ml) completely suppressed the ESR signal, whereas catalase (2000 U/ml) had no effect. A23187 stimulated extracellular O2 production in a time- and dose-dependent manner. The coenzymes NADH and NADPH both increased the ESR signal, whereas a flavin antagonist, diphenylene iodonium, abolished the ESR signal. Phorbol myristate acetate potentiated, whereas bisindolylmaleimide I inhibited the A23187-stimulated O2 production, suggesting the involvement of protein kinase C. These signals were not altered L-NAME, a NO-synthase inhibitor, suggesting that the endogenous production of NO· did not alter O2 production. Finally, the amount of O2 generated by A23187-stimulated post-confluent BAEC was one order of magnitude higher than that evoked by rat aortic smooth muscle cells stimulated under the same conditions.  相似文献   

17.
Abstract

This study was undertaken to investigate the effects of oral L-arginine administration and exercising training on the NO concentration emanating from rat tail and NOx in plasma. Obese (fa/fa) Zucker rats (n = 22) were divided into four groups: (1) oral L-arginine administration (A) (n = 6), (2) exercise training (E), (3) exercise training + L-arginine administration (E + A) (n = 5), and (4) non-exercise training + non-L-arginine administration (N) (n = 6). The control (+/+) Zucker rats (n = 22) were also divided into the same four groups. The body weight of the E + A and the A groups was significantly lower than that of the N group. The NO concentration emitted from the tail was higher in the L-arginine (E + A and A) groups than in the non-L-arginine (E and N) groups in both obese and control rats. Exercise training did not affect the skin gas NO concentration in either obese or control rats. Plasma NOx concentrations in four obese rats were significantly higher than those observed in control rats. Exercise training did not influence the level of plasma NOx in obese or control rats. In conclusion, this study confirmed that L-arginine administration increases the skin gas NO concentration and obesity increases the plasma NOx level. The plasma NOx concentrations were not affected by L-arginine administration or exercise training in obese or control rats.  相似文献   

18.
Nitric oxide synthase (NOS) gene has been partially sequenced from Hyphantria cunea and compared with those already determined from insects. Hyphantria cunea NOS possesses putative recognition sites for co‐factors heme, BH4, CaM, FMN, FAD, and NADPH common to NOS. The deduced amino acid sequence of H. cunea NOS cDNA showed 70.3% identity to Manduca sexta NOS and 57.6–69.5% identity to NOS sequences from other insects. Nitric oxide synthase is expressed in all tissues of H. cunea, except in hemocytes. The NOS expression in midgut, fat body, epidermis, and Malpighian tubule strongly increased against Gram‐positive and Gram‐negative bacterial infection. These results suggest that NOS may play an important role in insect defense system against bacterial infection.  相似文献   

19.
News and Views     
Endogenous nitric oxide (NO) is an important mediator in the processes that control biological clocks and circadian rhythms. The present study was designed to elucidate if NO synthase (NOS) activity in the brain, kidney, testis, aorta, and lungs and plasma NOx levels in mice are controlled by an endogenous circadian pacemaker. Male BALB/c mice were exposed to two different lighting regimens of either light–dark 14:10 (LD) or continuous lighting (LL). At nine different equidistant time points (commencing at 09:00h) blood samples and tissues were taken from mice. The plasma and tissue homogenates were used to measure the levels of NO2+ NO3? (NOx) and total protein. The NOx concentrations were determined by a commercial nitric oxide synthase assay kit, and protein content was assessed in each homogenate tissue sample by the Lowry method. Nitric oxide synthase activity was calculated as pmol/mg protein/h. The resulting patterns were analyzed by the single cosinor method for pre-adjusted periods and by curve-fitting programs to elucidate compound rhythmicity. The NOS activity in kidneys of mice exposed to LD exhibited a circadian rhythm, but no rhythmicity was detected in mice exposed to LL. Aortic NOS activity displayed 24h rhythmicity only in LL. Brain, testis, and lung NOS activity and plasma NOx levels displayed 24h rhythms both in LD and LL. Acrophase values of NOS activity in brain, kidney, testis, and lungs were at midnight corresponding to their behavioral activities. Compound rhythms were also detected in many of the examined patterns. The findings suggest that NOS activity in mouse brain, aorta, lung, and testis are regulated by an endogenous clock, while in kidney the rhythm in NOS activity is synchronized by the exogenous signals.  相似文献   

20.
Studies have indicated the involvement of a glutamatergic mechanism in lithium (Li+) action. Glutamatergic agonists, such as kainic acid, are known to promote the synthesis of nitric oxide (NO) and to increase cGMP, while Li+ has displayed a similar, yet unexplained, ability to increase cGMP. NO synthesis is regarded as the principal prodromal event leading to the activation of the guanyl cyclase-cGMP transduction mechanism. In the present study, the involvement of the NO:cGMP pathway in the action of Li+ was examined, while the possibility of a glutamatergic mechanism in this response was also investigated. Parameters examined included cortical accumulation of cGMP and the stable oxidative metabolites of NO, viz. NO 2 and NO 3 , collectively expressed as NO 2 . A significant positive correlation was observed in the in vivo cGMP and NO 2 data throughout all the groups. Chronic treatment of rats with LiCl (0.3% m/m) engendered a significant increase in cGMP levels which was inhibited by the NO-synthase (NOS) inhibitor, N-nitro-l-arginine methyl ester (L-NAME). Acute administration of kainic acid resulted in an increased accumulation of NO 2 , also prevented by concomitant L-NAME administration. In addition, a synergistic stimulatory response on cortical NO 2 was observed in the combination of LiCl and kainic acid. Collectively, these data implicate an involvement of a glutamatergic-mediated NO:cGMP transduction mechanism in the action of Li+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号