首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mints are the most popular economic and traditional herbs. The aim of this article was chemical characterization of volatile compounds from wild populations of Mentha aquatica, M. arvensis, M. longifolia, M. microphylla, M. pulegium, M. spicata, Mdumetorum, Mgentillis and Mverticillata, as well as cultivated samples of M. spicata, Mpiperita ‘Alba’ and Mpiperita ‘Crispa’. Analyses were performed directly from dried aerial parts (herb) of collected samples by headspace gas chromatography‐mass spectrometry. In total 54 compounds were detected, representing from 89.99 % to 99.66 % of volatile fractions of all investigated samples. The recorded volatiles were primarily monoterpene hydrocarbons and oxygenated monoterpenes, while oxygenated aromatic monoterpenes, sesquiterpene hydrocarbons and aliphatic compounds were present in lower concentrations in analyzed samples. The major components were linalool, limonene, 1,8‐cineol, α‐terpinyl acetate, pulegone, β‐pinene and menthol. The cluster analysis revealed five main groups or chemotypes according to qualitative and quantitative content of volatiles, as well as similarities among samples. These results contribute to the knowledge on the mints chemistry in Pannonian Plain and Balkan Peninsula.  相似文献   

2.

The improvement of the growth and quality of medicinal plants under stress is of significance, worldwide. The hypothesis was to alleviate salinity stress in Mentha piperita by enhancing nutrient uptake using magnetically treated water, which to our knowledge has not been previously investigated. The objective was to test the effects of magnetized water (using alternating magnetic fields) (main plots, M1-M4 representing control, 100, 200, and 300 mT, respectively), salinity (subplots, S1-S4 representing control, 40, 80, and 120 mM NaCl, respectively), and growth medium (sub-subplots, X1-X4 representing coco peat, palm, coco peat + perlite, and palm + perlite, respectively) on M. piperita nutrient uptake in the greenhouse. The M treatments, especially the 100 and 200 mT levels, significantly increased plant N (1.08%, S3M4X1), P (0.89%, S3M3X1), K (3.23%, S3M3X1), Ca (53.6 mg/kg, S4M4X4), and Mg (39.63 mg/kg, S3M3X2) concentrations (compared with control at 0.71, 0.49, 2.4, 26.63, 1.63) even at the highest level of salinity. Magnetically treated water also significantly enhanced plant Fe and Zn concentration to a maximum of 750 μg/kg (M4S3X1) and 94.67 μg/kg (S4M4X3), under salinity stress, respectively. The single and the combined use of organic and mineral media significantly affected plant nutrient uptake, especially when used with the proper rate of M treatment. If combined with the proper growth medium, the magnetized water may be more effective on the alleviation of salt stress in Mentha piperita by enhancing nutrient uptake.

  相似文献   

3.
Menthol is an organic compound with diverse medicinal and commercial applications, and is made either synthetically or through extraction from mint oils. The aim of the present study was to investigate menthol levels in selected menthol-producing species belonging to the Lamiaceae family, and to determine phylogenetic relationships of menthol dehydrogenase gene sequence among these species. Three genus of Lamiaceae, namely Mentha, Salvia, and Micromeria, were selected for phytochemical and phylogenetic analyses. After identification of each species based on menthol dehydrogenase gene in NCBI, BLAST software was used for the sequence alignment. MEGA4 software was used to draw phylogenetic tree for various species. Phytochemical analysis revealed that the highest and lowest amounts of both essential oil and menthol belonged to Mentha spicata and Micromeria hyssopifolia, respectively. The species Mentha spicata and Mentha piperita, which were assigned to one cluster in the dendrogram, contained the highest amounts of essential oil and menthol while Micromeria species, which was in the distinct cluster and placed in the farther evolutionary distance, contained the lowest amount of essential oil and menthol. Phylogenetic and phytochemistry analyses showed that essential oil and menthol contents of menthol-producing species are associated with menthol dehydrogenase gene sequence.  相似文献   

4.
This study aims to investigate the antioxidant effect of aromatic volatiles of three common aromatic plants, Lavandula dentata, Mentha spicata, and M. piperita. In this study, kunming mice subjected to low oxygen condition were treated with the volatiles emitted from these aromatic plants through inhalation administration. Then the blood cell counts, and the activities and gene expressions of antioxidant enzymes in different tissues were tested. The results showed that low oxygen increased the counts of red blood cells, white blood cells, and blood platelets of mice, and aromatic volatiles decreased their counts. Exposure to aromatic volatiles resulted in decreases in the malonaldehyde contents, and increases in the activities and gene expressions of superoxide dismutase, glutathione peroxidase, and catalase in different tissues under low oxygen. In addition, as the main component of aromatic volatiles, eucalyptol was the potential source that imparted positive antioxidant effect.  相似文献   

5.
为探究接种丛枝菌根(arbuscular mycorrhiza,AM)真菌对不同盐胁迫水平下留兰香和常夏石竹侵染特性与生理指标的影响,该研究采用盆栽试验的方法,将留兰香和常夏石竹分为接种处理与对照处理,并施加不同浓度(0、50、100、150、200 mmol/L)的NaCl胁迫,胁迫结束后测定两种植物的侵染特性与生理指标。结果表明:(1)随着盐浓度的升高,留兰香和常夏石竹的侵染率、侵染强度、丛枝丰度和泡囊丰度均不断下降,且常夏石竹的各项侵染指标总体上均高于留兰香。(2)接种AM真菌提高了各盐浓度下留兰香和常夏石竹的总叶绿素含量以及可溶性糖与可溶性蛋白含量,同时显著降低了二者在不同盐浓度条件下的脯氨酸含量。(3)接种AM真菌在不同程度上提高了留兰香和常夏石竹体内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性;并降低了在不同盐浓度条件下留兰香和常夏石竹的丙二醛含量。研究发现,接种AM真菌可以在不同程度上提高盐胁迫下留兰香和常夏石竹渗透调节能力和抗氧化酶系统活性,增强了植物的耐盐能力,从而使植物在盐胁迫条件下更好地生长。  相似文献   

6.
The composition of the essential oils and methanolic extracts of two cultivated mint species (M. longifolia and M. pulegium), as well as the in vitro antimicrobial and antioxidant activities of the essential oil and methanol extract of Mentha longifolia and Mentha pulegium were compared. GC-MS analysis of the essential oil identified 41 compounds constituting 96.66 and 96.13% of the total oil from M. longifolia and M. pulegium, respectively. The later oils were rich on pulegone (47.15 and 61.11%, respectively). Moreover, 1,8 cineole (11.54%), menthone (10.7%), α-pinene (3.57%), α-terpineol (3.17%) and d-cadinene (3.53%) were only present in M. longifolia oil, while isomenthone (17.02%), and piperitone (2.63%), were characteristic of M. pulegium oil. Shoot extract of the two species showed significantly different contents in total polyphenols (89.1 and 37.41 mg GAE/g DW), flavonoids (63.93 and 33.83 mg CE/g DW) and tannins (1.47 and 3.07 mg CE/g DW), respectively in M. longifolia and M. pulegium. The essential oils showed strong antimicrobial activity against all 16 microorganisms tested, whereas the methanol extracts were inactive. Moreover, the essential oils showed higher antioxidant activity than the methanolic extracts against the DPPH and superoxide radical scavenging. In fact, antioxidant activities of the oils were the same for both M. longifolia and M. pulegium against DPPH (IC50 = 9 and 10 μg/ml, respectively) and 2-fold and 4-fold higher than shoot extracts (IC50 = 20 and 48 μg/ml, respectively). Moreover, both oils showed the same antioxidative abilities as compared to the positive control (butylated hydroxytoluene). In the same way, the capacity to inhibit superoxide anion was very significant for the two oils (0.1 μg/ml for M. longifolia and 0.11 μg/ml for M. pulegium).  相似文献   

7.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say is one of the most important defoliator pests of potato in the world and it often causes extremely large potato yield losses. Potatoes are the preferred hosts for the pest, but it may feed and reproduce on a number of other plants in the Solanaceae family. Public concern related to pesticides and their residues in and on the foods had prompted a rise of consumer interest in organically produced foods. There have been growing efforts to detect and introduce suitable plant compounds that they have insecticidal properties. However, discovering of plant extracts for possible use in control of this pest requires more studying about plant extracts and compounds. Since resistance of CPB to common chemical insecticides is well documented and potato is one of the most prominent nutritious food products for many people in many countries, we examined the effect of essential oils (EOs) of European pennyroyal, lavander, mint, oregano and savory and methanolic extracts of fumitory, licorice and oregano on the pest. These plants were selected because they have medicinal properties and they are safe to human and environment. Adult CPBs were exposed to mentioned plant extracts and essential oils. LC50 values for EOs of lavander and European pennyroyal were 4154 and 3561 ppm, respectively. The results demonstrated that essential oil of European pennyroyal (Mentha longifolia) would be suitable compound to control the pest, but essential oil of mint (Mentha spicata) was not effective against the pest. Also it is notable that at all treatments, the amount of adult feeding was very low.  相似文献   

8.
The fumigant effect of Mentha piperita and Ocimum basilicum oils and their mixture against adults and eggs of Callosobruchus chinensis (L.) was evaluated. Bioassay experiments showed that Ocimum basilicum oil was significantly effective against adult and egg stage which was the least effective. However, in the fumigant toxicity experiments against adult stage, Ocimum basilicum oil at a dose of 1.0 μl/38.5 ml air caused 100% mortality (LC50 = 1.88), the mixture of both oils at a dose of 6.0 μl/38.5 ml air caused 100% mortality (LC50 = 10.3) and Mentha piperita oil at a dose of 80.0 μl/38.5 ml air caused 80.0% mortality (LC50 = 41.224) during a one day exposure period. Regarding the oviposition deterrent activity, Ocimum basilicum oil achieved 100% oviposition deterrent (at a dose of 0.5 μl/38.5 ml air) followed by the mixture of Mentha piperita and Ocimum basilicum oils, which achieved 71.22% oviposition deterrent (at a dose of 1.0 μl/38.5 ml air) and Mentha piperita oil, which achieved 39.6% oviposition deterrent (at a dose of 5.0 μl/38.5 ml air). The essential oils and their mixtures studied here determined a significant decrease in the number of eggs hatched and in the emergence of adults. The eggs failed to hatch on using Ocimum basilicum oil at a dose of 0.6 μl/38.5 ml air. However, the number of eggs hatched decreased to 7.4 on using a mixture of oils at a dose of 2.0 μl/38.5 ml air and 14.0 with Mentha piperita oil at a dose of 80.0 μl/38.5 ml air compared with 25.0 eggs hatched in the control experiments. On the other hand, the percentage reduction in emerging adults were 100% for Ocimum basilicum oil, 90.9% for a mixture of the two oils and 72.7% for Mentha piperita oil. Results showed that Ocimum basilicum oil and Ocimum basilicum oils plus Mentha piperita oils in blend are potential alternatives to synthetic fumigants in the treatment of durable agricultural products. Successful adoption of plant oils in the protection of food commodities promises an eco-friendly option compatible with international biosafety regulations.  相似文献   

9.
The chemical composition of the essential oils from Mentha piperita L., Mentha crispa L., Origanum vulgare L., Dracocephalum moldavica L., and Hyssopus officinalis L. cultivated under the conditions of the Western Siberia Region was studied using the chromatography-mass spectrometry approach. The results on the composition of the cultivated O. vulgare, D. moldavica, and H. officinalis are comparable with the data for wild plants, and for M. piperita and M. crispa, with the plants grown in the Southern regions of Russia. The data on the chemical composition of the essence oil, or attar, from M. crispa (Inna breed) were obtained for the first time, and the data for H. officinalis were substantially extended.  相似文献   

10.
Sap-feeding homopterans, which reduce the fitness of their host plants, are often tended by ants that feed on their honeydew. The composition of the honeydew varies with both the aphid and the host plant. Extra-floral nectaries (EFNs) are believed to have evolved to attract attending ants, protecting the hosts, but it is unknown if EFNs on different plants have the same impact on the relations between an aphid species feeding on those plants and its tending ant. Experimental research was conducted to examine the attraction of Tapinoma erraticum scout ants to honeydew from the aphid Aphis gossypii feeding on two different plants, Prunus amygdalus and Mentha piperita, negligence of tending the aphids, and survival of the aphids in the presence of artificial EFNs. The scout ants were significantly more attracted to artificial nectar dispensed on P. amygdalus leaves than on M. piperita, or aphids on both plants and water. They neglected aphids in the presence of artificial EFNs on M. piperita but not on P. amygdalus. The aphid population on M. piperita did not statistically change in the presence of artificial EFNs during the 8 days of the third experiment. On P. amygdalus, the aphids succeeded in developing fully to winged form. In conclusion, the responses of the ants tending aphids to the presence of artificial EFNs were influenced by the host plant.  相似文献   

11.
A. Capuzzo 《Plant biosystems》2016,150(2):236-243
Hybridization of species belonging to the genus Mentha is quite common. However, the indicators of hybridity are many and make Mentha hybrids' identification difficult. By using the same molecular strategy that allowed us to unequivocally identify some Mentha species, we amplified the Not-Transcribed-Spacer (NTS) of the 5S-rRNA gene to characterize the industrial crop peppermint, M. × piperita and some important Mentha interspecific hybrids: M. × dalmatica, M. × dumetorum, M. × rotundifolia, M. × maximilianea, M. × smithiana, M. × verticillata, M. × villosa. DNA amplification, sequence and cluster analysis revealed differences in the 5S-rRNA NTS region of Mentha hybrids. Peppermint and all other hybrids were unequivocally discriminated by RFLP analysis by using TaqI restriction enzyme, while a further discrimination between M. × dumetorum and M. × verticillata was obtained by XhoI restriction enzyme. Essential oil composition showed clustering patterns similar to DNA fingerprint, with a clear discrimination between plants producing menthofuran (e.g. M. aquatica and its related hybrids, including peppermint) and those containing piperitenone oxide (M. longifolia and its related hybrids).  相似文献   

12.
Employing nine clones ofMentha arvensis and four clones ofM. spicata, 932 F, hybrids were synthesized and compared to 20 clones ofM. x gracilis. Two clones ofM. x gracilis with 60 somatic chromosomes were matched to a selected F1 hybrid. The other 18 clones ofM. x gracilis had somatic chromosome numbers of 60, 72, 84, and 96, and while these chromosome numbers appeared in the F1 progeny, morphological matches correlated with their correct chromosome numbers were not synthesized. The range of pollen and seed fertility, as well as the inheritance of male-sterility, leaf pubescence, and crispness, indicates that no one character can be used to identifyM. x gracilis, but all characters can be explained fromM. arvensis x M. spicata.  相似文献   

13.
Essential oils are one of the known plant materials for insect pest control. The studies about essential oils application for control of insect pest population has been started in recent years. This study aims to investigate repellency effect and fumigant toxicity of Mentha piperita and Cuminum cyminum essential oil on Tribolium castaneum and Sitophilus oryzae. The results showed that the mortality rate of adult insects was increased with increase in essential oil concentration. The highest pest mortality rate in the case of M. piperita and C. cyminum on T. castaneum and S. oryzae was 64, 68, 82 and 78%, respectively. The average insect mortality was significantly different in various concentrations in most of the treatments. Amounts of LC50 were 0.421, 0.271, 0.135 and 0.136 (ml/ml) for M. piperita and C. cyminum essential oil on T. castaneum and S. oryzae, respectively. Different concentrations of M. piperita and C. cyminum essential oil had different repellency effect on T. castaneum and S. oryzae. Repellency effect was increased with increase in essential oil concentration, and the highest repellency effect was belonged to the highest concentration. Essential oils of M. piperita and C. cyminum caused 61.2 and 66.4% repellency on T. castaneum. Meanwhile, their effect was found to be 55.2 and 60.4% repellency on S. oryzae at the highest concentration.  相似文献   

14.
The effects of light, temperature, and salinity on growth, net CO2 exchange and leaf anatomy of Distichlis spicata were investigated in controlled environment chambers. When plants were grown at low light, growth rates were significantly reduced by high substrate salinity or low temperature. However, when plants were grown at high light, growth rates were not significantly affected by temperature or salinity. The capacity for high light to overcome depressed growth at high salinity cannot be explained completely by rates of net photosynthesis, since high salinity caused decreases in net photosynthesis at all environmental conditions. This salinity-induced decrease in net photosynthesis was caused largely by stomatal closure, although plants grown at low temperature and low light showed significant increases in internal leaf resistance to CO2 exchange. Increased salinity resulted in generally thicker leaves with lower stomatal density but no significant differences in the ratio of mesophyll cell surface area to leaf area. Salinity and light during growth did not significantly affect rates of dark respiration. The mechanisms by which Distichlis spicata tolerates salt appear to be closely coulpled to the utilization of light energy. Salt-induced leaf succulence is of questionable importance to gas exchange at high salinity in this C4 species.  相似文献   

15.
This paper reports studies on the growth and biosynthesis of monoterpenes by transformed shoot cultures of Mentha citrata and Mentha piperita, originally developed 5 years ago and since maintained by regular subculturing. Throughout this time, the M. citrata culture has stably maintained production of an oil closely resembling that of the parent plant in which linalool and linalyl acetate are the predominant components. However, M. piperita, which initially showed a divergence from the parent plant in producing significant amounts of menthofuran in addition to the characteristic oil components menthol and menthone, has now been found to produce pulegone and menthofuran as the major components. The cultures were subjected to different environmental conditions of varying periods of light and temperature in an attempt to restore menthol and menthone production. Increased illumination reduced the yields of pulegone and menthofuran but did not stimulate the production of either menthol or menthone, which remained only at trace levels (below 0.2 g/g fresh weight). Cultures of M. citrata were, however, stimulated by increased illumination, and produced more linalool and linalyl acetate. Shoot cultures of M. citrata and M. piperita were grown in 14–1 fermenters for up to 60 dys during which the biomass increased from approximately 100 g to 2.5 kg and 3.5 kg respectively. Both cultures rapidly consumed sucrose with a concomitant release of glucose, and the uptake of inorganic ions was similar except that M. citrata consumed far less Na+ during the fermentation. The total yields of monoterpenes from the fermentations were 1.16 g (M. piperita) and 0.18 g (M. citrata). *** DIRECT SUPPORT *** AG903062 00005  相似文献   

16.

The changes in lipid peroxidation, H2O2, proline, protein, involvement of different antioxidant systems (catalase, guaiacol peroxidase, ascorbate peroxidase) and callus-related traits were investigated under salt stress in the callus of two different ploidy levels of Brassica including B. juncea and B. oleracea. The calluses of B. juncea genotypes were less sensitive to NaCl stress in comparison with those of B. oleracea while increasing the concentrations of NaCl from 0 to 200 mM. Tetraploid genotype (B. juncea cr3356) showed a significant increase in the contents of protein and proline, and guaiacol peroxidase activity and catalase enzymes at higher salinity levels. In addition, a significant decrease occurred in the amount of H2O2 and malondialdehyde along with increasing the salinity intensity. Diploid cultivar (B. oleracea bra 2828) had the lowest enzymatic activities and the highest content of H2O2 and malondialdehyde along with an increase in the salinity level. Therefore, this genotype was identified as the most sensitive cultivar under the salinity stress. The salinity resistance difference between diploid and amphidiploid species could be attributed to the differences in the ploidy level of these species. This result underlines the fact that the tetraploid genome of B. oleracea could be considered as a suitable candidate for production under salinity conditions through maintaining higher activities of antioxidant enzymes.

  相似文献   

17.
A new method is reported for the histochemical localizationof monoterpene phenols in essential oil secretory structures.The method was adapted from a spot test originally devised forin vitro detection of phenolic compounds in organic analyses.Plant subjects were the Lamiaceae species Thymus vulgaris L.,Oreganum vulgare L. and Mentha x piperita L., which accumulateessential oil in glandular trichomes. A reagent consisting of4-nitrosophenol in conc. H2SO4was applied to sample leaves ofeach species. A positive test for phenol was indicated by theproduction of coloured indophenols. Using this method, monoterpenephenols were identified in the trichomes of T. vulgaris(thymol)and O. vulgare(carvacrol), indicated by colour changes to redand green respectively. No phenol was detected in trichomesof M. x piperita. Results were confirmed by GC-MS analysis ofleaf volatile extracts from each species, and in vitro testswith thymol and carvacrol. The method could be used in fieldsurveys for rapid identification of potential medicinal plantsand bioactive compounds. Copyright 2001 Annals of Botany Company Histochemistry, secretory structures, glandular trichomes, Lamiaceae, Thymus vulgaris, Oreganum vulgare, Mentha x piperita, essential oil, aromatic monoterpenes  相似文献   

18.
Abstract

The genus Verbascum L. (Scrophulariaceae) includes medicinal plants, which have several bioactive compounds especially saponins. The possible recovery ability of Verbascum sinuatum from drought stress conditions was assessed by using salicylic acid (SA), methyl jasmonate (MJA) and titanium dioxide nanoparticles (TiO2NPs) as plant growth regulators (PGRs) in liquid culture media. Thirty days-old plants were exposed to different concentrations of polyethylene glycol (PEG-6000) for creating artificial drought conditions (0, ?0.3, and ?0.6?MPa osmotic potential) and also treated with 200?µM methyl jasmonate (MJA), 100?µM salicylic acid (SA) and 20?ppm TiO2 nanoparticles (TiO2NPs). Results showed that the growth parameters and the content of photosynthetic pigments decreased at higher drought level (?0.6?MPa). However, SA and TiO2NPs alleviated the adverse effects of drought stress by increasing water stress tolerance through promotion of enzymatic and nonenzymatic antioxidant defense systems. MJA negatively affected the growth parameters and increased the content of malondialdehyde (MDA), hydrogen peroxide (H2O2) and total saponin and also the activity of peroxidase (POD) and polyphenol oxidase (PPO). Based on the results obtained from this study, the recovery treatments mainly affected the defense-related metabolism in Verbasum sinuatum plants.  相似文献   

19.
S. Shi  L. Tian  L. Ma  C. Tian 《Microbiology》2018,87(3):425-436
Medicinal plants are the basic materials of traditional Chinese medicine. Soil characteristics and microbial contribution play important roles in the growth and product quality of medicinal plants, but the link between them in the rhizosphere of medicinal plants has been overlooked. Accordingly, Mentha haplocalyx, Perilla frutescens, Glycyrrhiza uralensis, and Astragalus membranaceus, four plants used in traditional Chinese medicines, were investigated in this study in order to elucidate bacterial and arbuscular mycorrhizal fungal (AMF) diversity in the rhizosphere and its possible association with soil quality. DGGE-based 16S rRNA and 18S rRNA gene sequencing results indicated that the diversity of both bacteria and AMF in Glycyrrhiza uralensis and Astragalus membranaceus was significantly higher than those in Mentha haplocalyx and Perilla frutescens, suggesting that medicinal plants have different preferences even under the same conditions. In addition, enzymatic activities and nutrition were enhanced in the rhizospheric soil of Mentha haplocalyx and Perilla frutescens, and the correlation among AMF diversity, soil enzymatic activities and nutrition was confirmed using RDA analysis. These results suggest the potential to grow medicinal plants with a reasonable rotation or intercrop in order to maintain long-term continuous soil development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号