首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colorectal cancer is the most common gastrointestinal cancer and causes severe damage to human health. PRDX2 is a member of the peroxiredoxin family reported to have a high level of expression in colorectal cancer. However, the mechanisms by which PRDX2 promotes the proliferation of colorectal cancer are still unclear. Here, the results indicated that PRDX2 expression was upregulated in colorectal cancer and closely correlated with poor prognosis. Functionally, PRDX2 promoted the proliferation of colorectal cancer cells. Mechanistically, PRDX2 could bind RPL4, reducing the interaction between RPL4 and MDM2. These findings demonstrate that the oncogenic property of PRDX2 may be attributed to its regulation of the RPL4-MDM2-p53 pathway, leading to p53 ubiquitinated degradation.Subject terms: Colorectal cancer, Colorectal cancer  相似文献   

2.
3.
4.
5.
6.
7.
The modes of proliferation and differentiation of neural stem cells (NSCs) are coordinately controlled during development, but the underlying mechanisms remain largely unknown. In this study, we show that the protooncoprotein Myc and the tumor suppressor p19ARF regulate both NSC self-renewal and their neuronal and glial fate in a developmental stage–dependent manner. Early-stage NSCs have low p19ARF expression and retain a high self-renewal and neurogenic capacity, whereas late-stage NSCs with higher p19ARF expression possess a lower self-renewal capacity and predominantly generate glia. Overexpression of Myc or inactivation of p19ARF reverts the properties of late-stage NSCs to those of early-stage cells. Conversely, inactivation of Myc or forced p19ARF expression attenuates self-renewal and induces precocious gliogenesis through modulation of the responsiveness to gliogenic signals. These actions of p19ARF in NSCs are mainly mediated by p53. We propose that opposing actions of Myc and the p19ARF–p53 pathway have important functions in coordinated developmental control of self-renewal and cell fate choices in NSCs.  相似文献   

8.
9.
10.
p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.  相似文献   

11.
Hematopoietic stem cells (HSCs) are defined by their exclusive capacity to both self-renew and to give rise to multipotent progenitors (MPPs) that in turn differentiate into the mature blood cell lineages. The tumor suppressor p53, in addition to its role in the regulation of the cell cycle, plays an importatn role in HSC self-renewal, although it has not fully resolved. Here we report that in super-p53 mice (sp53), which carry one extra gene dose of p53, the miR-33 is down-regulated in HSCs and highly expressed in MPPs. Transplantation assays of miR-33-transduced sp53 HSC results in a significant acquisition of repopulating capacity and a decrease of recipients survival. Moreover, high levels of miR-33 represses the endogenous level of p53 protein in murine embryonic fibroblasts (MEFs), leads both to neoplastic transformation and anchorage independent growth of MEFs, and displays a decrease of apoptotic response using tumor-derived cell lines. Accordingly, we demonstrate that miR-33-mediated down-regulation of p53 is dependent on the binding of miR-33 to two conserved motifs in the 3UTR of p53. Together, these data show that the miR-33 modifies HSC repopulating efficiency of sp53 mice by impairing the p53 function. Defining the role of miR-33 in controlling the HSC self-renewal through p53 may lead to the prevention and treatment of hematopoietic disorders.  相似文献   

12.
13.
Comment on: Freed-Pastor WA, et al. Cell 2012; 148:244-58 and Ginestier C, et al. Stem Cells 2012; 1327-37.  相似文献   

14.
Mutations can confer a selective advantage on specific cells, enabling them to go through the multistep process that leads to malignant transformation. The cancer stem cell hypothesis postulates that only a small pool of low-cycling stem-like cells is necessary and sufficient to originate and develop the disease. Normal and cancer stem cells share important functional similarities such as 'self-renewal' and differentiation potential. However, normal and cancer stem cells have different biological behaviours, mainly because of a profound deregulation of self-renewal capability in cancer stem cells. Differences in mode of division, cell-cycle properties, replicative potential and handling of DNA damage, in addition to the activation/inactivation of cancer-specific molecular pathways confer on cancer stem cells a malignant phenotype. In the last decade, much effort has been devoted to unravel the complex dynamics underlying cancer stem cell-specific characteristics. However, further studies are required to identify cancer stem cell-specific markers and targets that can help to confirm the cancer stem cell hypothesis and develop novel cancer stem cell-based therapeutic approaches.  相似文献   

15.
BackgroundLung cancer is a leading fatal malignancy due to the high incidence of treatment failure. Dysfunction of the tumor suppressor p53 contributes to cancer initiation, progression, and therapeutic resistance. Targeting MDM2, a negative regulator of p53, has recently attracted interest in cancer drug research as it may restore tumor suppressive function.PurposeThe present study aimed to investigate the effect of 3,4-dihydroxy-5,4′-dimethoxybibenzyl (DS-1) on targeting MDM2 and restoring p53 function in lung cancer cells.MethodsThe efficacy of DS-1 alone or in combination with cisplatin in lung cancer cells was determined by MTT, nuclear staining, and annexin V/PI assay. The expression of apoptosis-related proteins was determined by western blot analysis. To evaluate the role of DS-1 on the stabilization and degradation of p53, cycloheximide chasing assay and immunoprecipitation were conducted, and the active form of p53 was investigated by immunofluorescent staining assay. To confirm and demonstrate the site interaction between DS-1 and the MDM2 protein, in silico computational analysis was performed.ResultsDS-1 exhibited a cytotoxic effect and sensitized lung cancer cells to cisplatin-induced apoptosis. DS-1 caused a significant increase in the cellular level of p53 protein, while the active form of p53 (phosphorylation at Ser15) was unaltered. DS-1 treatment in combination with cisplatin could enhance activated p-p53 (Ser15) and p53 downstream signaling (Bax, Bcl-2, and Akt), leading to a higher level of apoptosis. Immunoprecipitation analysis revealed that DS-1 decreased the p53-ubiquitin complex, a prerequisite step in p53 proteasomal degradation. Molecular docking simulation further evidenced that DS-1 interacts with MDM2 within the p53-binding domain by carbon–hydrogen bond interaction at Lys27, π–alkyl interactions at Ile37 and Leu30, and van der Waals interactions at Ile75, Val51, Val69, Phe67, Met38, Tyr43, Gly34, and Phe31. Treatment by DS-1 and cisplatin in patient-derivated primary lung cancer cells showed consistent effects by increasing cisplatin sensitivity.ConclusionsOur findings provide evidence that DS-1 is an MDM2 inhibitor and its underlying mechanism involves MDM2 binding and p53 induction, which may benefit the development of this compound for lung cancer treatment.  相似文献   

16.
This study examined the effects of p53 gene status on DNA damage-induced cell death and chemosensitivity to various chemotherapeutic agents in non-small cell lung cancer (NSCLC) cells. A mutant p53 gene was introduced into cells carrying the wild-type p53 gene and also vice versa to introduce the wild-type p53 gene into cells carrying the mutant p53 gene. Chemosensitivity and DNA damage-induced apoptosis in these cells were then examined. This study included five cell lines, NCI-H1437, NCI-H727, NCI-H441 and NCI-H1299 which carry a mutant p53 gene and NCI-H460 which carries a wild-type p53 gene. Mutant p53-carrying cells were transfected with the wild-type p53 gene, while mutant p53 genes were introduced into NCI-H460 cells. These p53 genes were individually mutated at amino acid residues 143, 175, 248 and 273. The representative cell line NCI-H1437 cells transfected with wild-type p53 gene (H1437/wtp53) showed a dramatic increase in susceptibility to three anticancer agents (7-fold to cisplatin, 21-fold to etoposide, and 20-fold to camptothecin) compared to untransfected or neotransfected H1437 cells. An increase in chemosensitivity was also observed in wild-type p53 transfectants of H727, H441, H1299 cells. The results of chemosensitivity were consistent with the observations on apoptotic cell death. H1437/wtp53 cells, but not H1437 parental cells, exhibited a characteristic feature of apoptotic cell death that generated oligonucleosomal-sized DNA fragments. In contrast, loss of chemosensitivity and lack of p53-mediated DNA degradation in response to anticancer agents were observed in H460 cells transfected with mutant p53. These observations suggest that the increase in chemosensitivity was attributable to wild-type p53 mediation of the process of apoptosis. In addition, our results also suggest that p53 gene status modulates the extent of chemosensitivity and the induction of apoptosis by different anticancer agents in NSCLC cells.  相似文献   

17.
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. The plasminogen/plasmin system includes the uPA, its receptor, and its inhibitor (plasminogen activator inhibitor-1). Interactions between these molecules regulate cellular proteolysis as well as adhesion, cellular proliferation, and migration, processes germane to the pathogenesis of lung injury and neoplasia. In previous studies, we found that uPA regulates cell surface fibrinolysis by regulating its own expression as well as that of the uPA receptor and plasminogen activator inhibitor-1. In this study, we found that uPA alters expression of the tumor suppressor protein p53 in Beas2B airway epithelial cells in both a time- and concentration-dependent manner. These effects do not require uPA catalytic activity because the amino-terminal fragment of uPA lacking catalytic activity was as potent as two chain active uPA. Single chain uPA also enhanced p53 expression to the same extent as intact two chain active uPA and the amino-terminal fragment. Pretreatment of cells with anti-beta1 integrin antibody blocked uPA-induced p53 expression. uPA-induced p53 expression occurs without increased p53 mRNA expression. However, uPA induced oncoprotein MDM2 in a concentration-dependent manner. uPA-induced p53 expression does not require activation of tyrosine kinases. Inactivation of protein-tyrosine phosphatase SHP-2 inhibits both basal and uPA-induced p53 expression. Plasmin did not alter uPA-mediated p53 expression. The induction of p53 expression by exposure of lung epithelial cells to uPA is a newly recognized pathway by which urokinase may influence the proliferation of lung epithelial cells. This pathway could regulate pathophysiologic alterations of p53 expression in the setting of lung inflammation or neoplasia.  相似文献   

18.
Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of m  相似文献   

19.
Despite an increasing interest in the role of the p53 tumour suppressor protein in embryonic stem cells, not much is known about its regulation in this cell type.We show that the relatively high amount of p53 protein correlates with a higher amount of p53 RNA in ES cells compared to differentiated cells. Moreover, p53 RNA is more stable in embryonic stem cells and the p53 protein is more often transcribed. This is at least partly due to decreased expression of miRNA-125a and 125b in embryonic stem cells. Despite its cytoplasmic localisation, p53 is degraded in 26S proteasomes in embryonic stem cells. This process is controlled by Mdm2, the deubiquitinating enzyme Hausp and Ubc13. In contrast, the E3 ligase PirH2 appears to be less important for the control of p53 in embryonic stem cells. During differentiation, p53 protein and RNA levels are decreased which corresponds to increased expression of miRNA-125a and miRNA-125b.  相似文献   

20.
The regimen of afatinib and vinorelbine has been used to treat breast or lung cancer cells with some limitations. Aspirin alone or in combination with other agents has shown unique efficacy in the treatment of cancer. We designed a preclinical study to investigate whether the triple therapy of aspirin, afatinib, and vinorelbine could synergistically inhibit the growth of p53 wild-type nonsmall cell lung cancer (NSCLC) cells. Three NSCLC cells A549, H460, and H1975 were selected to study the effect of triple therapy on cell proliferation and apoptosis. Compared to single agents, triple therapy synergistically inhibited the proliferation of lung cancer cells with combination index <1. Meanwhile, the therapeutic index of triple therapy was superior to that of single agents, indicating a balance between efficacy and safety in the combination of three agents. Mechanistic studies showed that triple therapy significantly induced apoptosis by decreasing mitochondrial membrane potential, increasing reactive oxygen species, and regulating mitochondria-related proteins. Moreover, epidermal growth factor receptor (EGFR) downstream signaling proteins including JNK, AKT, and mTOR were dramatically suppressed and p53 was substantially increased after NSCLC cells were exposed to the triple therapy. We provided evidence that the triple therapy of aspirin, afatinib and vinorelbine synergistically inhibited lung cancer cell growth through inactivation of the EGFR/AKT/mTOR pathway and accumulation of p53, providing a new treatment strategy for patients with p53 wild-type NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号