首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Nguyen DT  Rovira II  Finkel T 《FEBS letters》2002,511(1-3):170-174
Advanced glycation end products (AGE) are known to serve as ligands for the scavenger receptors such as SR-A, CD36 and SR-BI. In the current study, we examined whether AGE is recognized by lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Cellular binding experiments revealed that AGE-bovine serum albumin (AGE-BSA) showed the specific binding to CHO cells overexpressing bovine LOX-1 (BLOX-1), which was effectively suppressed by an anti-BLOX-1 antibody. Cultured bovine aortic endothelial cells also showed the specific binding for AGE-BSA, which was suppressed by 67% by the anti-BLOX-1 antibody. Thus, LOX-1 is identified as a novel endothelial receptor for AGE.  相似文献   

3.
Lectin-like oxidized LDL receptor (LOX)-1 is a type II membrane protein that belongs to the C-type lectin family of molecules, which can act as a cell-surface endocytosis receptor for atherogenic oxidized LDL. LOX-1 can support binding, internalization and proteolytic degradation of oxidized LDL, but not of significant amounts of acetylated LDL, which is a well-known high-affinity ligand for class A scavenger receptors and scavenger receptor expressed by endothelial cells (SR-EC). LOX-1 is initially synthesized as a 40-kDa precursor protein with N-linked high mannose-type carbohydrate, which is further glycosylated and processed into a 50-kDa mature form. LOX-1 expression is not constitutive, but can be induced by proinflammatory stimuli, such as tumour necrosis factor-alpha, transforming growth factor-beta and bacterial endotoxin, as well as angiotensin II, oxidized LDL itself and fluid shear stress. In addition, LOX-1 expression is detectable in cultured macrophages and activated vascular smooth muscle cells. In vivo, endothelial cells that cover early atherosclerotic lesions, and intimal macrophages and smooth muscle cells in advanced atherosclerotic plaques can express LOX-1. Cell-surface LOX-1 can be cleaved through some protease activities that are associated with the plasma membrane, and released into the culture media. Purification of soluble LOX-1 and the N-terminal amino-acid sequencing identified the two cleavage sites (Arg86-Ser87 and Lys89-Ser90), both of which are located in the membrane proximal extracellular domain of LOX-1. Measurement of soluble LOX-1 in vivo may provide a novel diagnostic tool for the evaluation and prediction of atherosclerosis and vascular disease.  相似文献   

4.
5.
6.
It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-gamma was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-gamma inhibitor GW9662 suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-gamma and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.  相似文献   

7.
The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines.  相似文献   

8.
Diabetes mellitus accelerating atherosclerosis was associated with the enhanced glycoxidative modification of lipoproteins. LOX-1, the endothelial oxidized LDL receptor might be involved in the pathogenesis of diabetic atherosclerosis. In this study, we examined the vascular expression of LOX-1 in streptozotocin-induced diabetic rats. We found that LOX-1 was significantly increased in diabetic rat aorta compared with nondiabetic control. Immunohistochemistry revealed that the most distinctive staining of LOX-1 was in the endothelial cells, especially in the bifurcations of artery branches from aorta. In cultured aortic endothelial cells, diabetic rat serum and advanced glycation endproducts-BSA induced LOX-1 expression, while control rat serum along with high glucose did not. Applying a competitive inhibition assay, we found that LOX-1 ligand activity was accumulated in the diabetic rat serum, mainly in VLDL/LDL fractions. In addition, VLDL/LDL prominently increased LOX-1 among all the lipoprotein fractions of diabetic rat serum. In conclusion, diabetes markedly upregulated LOX-1 expression in the aortic endothelial cells. The enhanced glycoxidative modification of lipoproteins may contribute to the underlying mechanisms.  相似文献   

9.
Lectin-like OxLDL receptor-1 (LOX-1) was identified as the major receptor for oxidized low-density lipoprotein (OxLDL) in aortic endothelial cells. LOX-1 is a type II membrane protein that structurally belongs to the C-type lectin family. Here, we found that the lectin-like domain of LOX-1 is essential for ligand binding, but the neck domain is not. In particular, the large loop between the third and fourth cysteine of the lectin-like domain plays a critical role for OxLDL binding as well as C-terminal end residues. Alanine-directed mutagenesis of the basic amino acid residues around this region revealed that all of the basic residues are involved in OxLDL binding. Simultaneous mutations of these basic residues almost abolished the OxLDL-binding activity of LOX-1. Electrostatic interaction between basic residues in the lectin-like domain of LOX-1 and negatively charged OxLDL is critical for the binding activity of LOX-1.  相似文献   

10.
LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria   总被引:8,自引:0,他引:8  
Adhesion of bacteria to vascular endothelial cells as well as mucosal cells and epithelial cells appears to be one of the initial steps in the process of bacterial infection, including infective endocarditis. We examined whether lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), a member of scavenger receptor family molecules with C-type lectin-like structure, can support adhesion of Gram-positive and Gram-negative bacteria. Chinese hamster ovary-K1 (CHO-K1) cells stably expressing LOX-1 can support binding of FITC-labeled Staphylococcus aureus and Escherichia coli, which was suppressed by poly(I) and an anti-LOX-1 mAb. Adhesion of these bacteria to LOX-1 does not require divalent cations or serum factors and can be supported under both static and nonstatic conditions. Cultured bovine aortic endothelial cells (BAEC) can also support adhesion of FITC-labeled S. aureus, which was similarly suppressed by poly(I) and an anti-LOX-1 mAb. In contrast, binding of FITC-labeled E. coli to BAEC was partially inhibited by the anti-LOX-1 mAb, and poly(I) did not block FITC-labeled E. coli adhesion to BAEC, but, rather, enhanced it under a static condition. TNF-alpha increased LOX-1-dependent adhesion of E. coli, but not that of S. aureus, suggesting that S. aureus adhesion to BAEC may require additional molecules, which cooperate with LOX-1 and suppressed by TNF-alpha. Taken together, LOX-1 can work as a cell surface receptor for Gram-positive and Gram-negative bacteria, such as S. aureus and E. coli, in a mechanism similar to that of class A scavenger receptors; however, other unknown molecules may also be involved in the adhesion of E. coli to BAEC, which is enhanced by poly(I).  相似文献   

11.
Well-known coronary risk factors such as hyperlipidemia, hypertension, smoking, and diabetes are reported to induce the oxidative stress. Under the oxidative stress, low-density lipoprotein (LDL) is oxidatively modified in the vasculature, and formed oxidized LDL induces endothelial dysfunction, expression of adhesion molecules and apoptosis of vascular smooth muscle cells. It has become evident that these cellular responses induced by oxidized LDL are mediated by lectin-like oxidized LDL receptor-1 (LOX-1). LOX-1 was originally identified from cultured aortic endothelial cells as a receptor for oxidized LDL; however, recent investigations revealed that LOX-1 has diverse roles in the host-defense system and inflammatory responses, and it is involved in the pathogenesis of various diseases such as atherosclerosis-based cardiovascular diseases and septic shock. Beside oxidized LDL, LOX-1 recognizes multiple ligands including apoptotic cells, platelets, advanced glycation end products, bacteria, and heat shock proteins (HSPs). The HSPs function as a chaperone to affect protein folding of newly synthesized or denatured proteins. There are accumulating evidences that the HSPs released into the extracellular space have potent biological activities and it may work as a kind of cytokines. It is demonstrated that LOX-1 works as a receptor for HSP70, since it has high affinity for HSP70. The interaction of LOX-1 with HSP70 is involved in the cross-presentation of antigen. Given the potent and wide variety of biological activities, more understanding their interaction provides potential therapeutic strategy for various human diseases.  相似文献   

12.
Lectin-like oxidatively-modified LDL receptor-1 (LOX-1) is a major receptor for oxidized low-density lipoprotein (oxLDL) in aortic endothelial cells. Human LOX-1 (hLOX-1) gene (cDNA) was cloned from the monocytic leukemic cell line THP-1 and expressed in Pichia pastoris. The recombinant protein (rhLOX-1) was purified by his-tag affinity chromatography. Preliminary identification was performed by Western blot analysis and a ligand-receptor binding assay showed that the protein had specific oxLDL-binding activity.Revisions requested 21 September 2004; Revisions received 10 November 2004  相似文献   

13.
LOX-1 pathway affects the extent of myocardial ischemia-reperfusion injury   总被引:2,自引:0,他引:2  
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was originally identified as a receptor for oxidized low-density lipoprotein predominantly expressed in endothelial cells. LOX-1 expression can be induced in cardiomyocytes and that activation of LOX-1 is involved in apoptosis. To investigate possible roles of LOX-1 in myocardial ischemia-reperfusion injury, rats were subjected to coronary artery ligation for 1h followed by reperfusion for 2h. Immunohistochemistry revealed that expression of LOX-1 in cardiac myocytes was induced following ischemia-reperfusion but not ischemia alone. Administration of anti-LOX-1 monoclonal antibody resulted in a nearly 50% reduction in myocardial infarction size compared with that of normal IgG or saline (P<0.05). These findings suggest that activation of the LOX-1 pathway is involved in determining the extent of myocardial ischemia-reperfusion injury and that inhibition of the LOX-1 pathway may provide a novel strategy for treatment of acute myocardial infarction in humans.  相似文献   

14.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding.  相似文献   

15.
Oxidized low-density lipoprotein (ox-LDL) leads to atherosclerosis via lectin-like oxidized lipoprotein receptor-1 (LOX-1), one of the major receptor for ox-LDL. Inhibition of the binding of ox-LDL to LOX-1 decreases the proinflammatory and atherosclerotic events. The aim of the present study was to investigate whether protamine, a polybasic nuclear protein, interferes the binding of ox-LDL to LOX-1. Using sandwich ELISA with newly generated antibody, we measured the blocking effect of protamine on the binding of ox-LDL to LOX-1. Protamine dose-dependently inhibited the binding of ox-LDL to LOX-1. DiI-labeled ox-LDL uptake assay in two types of cultured human endothelial cells was performed with fluorescence microplate reader. Activation of extracellular-signal-regulated kinase (ERK)1/2 by ox-LDL was analyzed by immunoblotting. We found that protamine suppressed uptake of ox-LDL in endothelial cells and inhibited ERK1/2 activation by ox-LDL. These results suggest that protamine may possess anti-atherogenic potential by inhibiting ox-LDL binding to LOX-1 through electrostatic interactions.  相似文献   

16.
Inhibition of LOX-1 by statins may relate to upregulation of eNOS.   总被引:12,自引:0,他引:12  
LOX-1, a receptor for oxidized low-density lipoprotein (ox-LDL), plays a critical role in endothelial dysfunction and atherosclerosis; both of these conditions are associated with diminished expression of constitutive endothelial nitric oxide synthase (eNOS). Recent studies show that HMG CoA reductase inhibitors (statins) exert cardioprotective effect. We examined the role of LOX-1 in eNOS expression and modulation of this relationship by two different statins, simvastatin and atorvastatin in human coronary artery endothelial cells (HCAECs). Ox-LDL (40 microg/ml) upregulated the expression of LOX-1; simultaneously, there was a reduction in eNOS expression. Pretreatment of HCAECs with simvastatin or atorvastatin (1 and 10 microM) reduced ox-LDL-induced upregulation of LOX-1 and downregulation of eNOS (both P < 0.05). High concentration of statins (10 microM) was more potent than the low concentration (1 microM) (P < 0.05). Both statins also attenuated ox-LDL-mediated activation of MAP kinase. These observations indicate that statins attenuate the effect of ox-LDL on eNOS expression. Inhibitory effect on LOX-1 and subsequently MAP kinase activity provides a potential mechanism of beneficial effects of statins beyond lowering cholesterol.  相似文献   

17.
Lectin-like, oxidized low-density lipoprotein (LDL) receptor 1, LOX-1, is the major receptor for oxidized LDL (OxLDL) in endothelial cells. We have determined the crystal structure of the ligand binding domain of LOX-1, with a short stalk region connecting the domain to the membrane-spanning region, as a homodimer linked by an interchain disulfide bond. In vivo assays with LOX-1 mutants revealed that the "basic spine," consisting of linearly aligned arginine residues spanning over the dimer surface, is responsible for ligand binding. Single amino acid substitution in the dimer interface caused a severe reduction in LOX-1 binding activity, suggesting that the correct dimer arrangement is crucial for binding to OxLDL. Based on the LDL model structure, possible binding modes of LOX-1 to OxLDL are proposed.  相似文献   

18.

Background  

Dimeric lectin-like oxidized low-density lipoprotein receptor-1 LOX-1 is the target receptor for oxidized low density lipoprotein in endothelial cells. In vivo assays revealed that in LOX-1 the basic spine arginine residues are important for binding, which is lost upon mutation of Trp150 with alanine. Molecular dynamics simulations of the wild-type LOX-1 and of the Trp150Ala mutant C-type lectin-like domains, have been carried out to gain insight into the severe inactivating effect.  相似文献   

19.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.  相似文献   

20.
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is an endothelial scavenger receptor that is important for the uptake of OxLDL (oxidized low-density lipoprotein) and contributes to the pathogenesis of atherosclerosis. However, the precise structural motifs of OxLDL that are recognized by LOX-1 are unknown. In the present study, we have identified products of lipid peroxidation of OxLDL that serve as ligands for LOX-1. We used CHO (Chinese-hamster ovary) cells that stably express LOX-1 to evaluate the ability of BSA modified by lipid peroxidation to compete with AcLDL (acetylated low-density lipoprotein). We found that HNE (4-hydroxy-2-nonenal)-modified proteins most potently inhibited the uptake of AcLDL. On the basis of the findings that HNE-modified BSA and oxidation of LDL resulted in the formation of HNE-histidine Michael adducts, we examined whether the HNE-histidine adducts could serve as ligands for LOX-1. The authentic HNE-histidine adduct inhibited the uptake of AcLDL in a dose-dependent manner. Furthermore, we found the interaction of LOX-1 with the HNE-histidine adduct to have a dissociation constant of 1.22×10(-8) M using a surface plasmon resonance assay. Finally, we showed that the HNE-histidine adduct stimulated the formation of reactive oxygen species and activated extracellular-signal-regulated kinase 1/2 and NF-κB (nuclear factor κB) in HAECs (human aortic endothelial cells); these signals initiate endothelial dysfunction and lead to atherosclerosis. The present study provides intriguing insights into the molecular details of LOX-1 recognition of OxLDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号