首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used DNA polymorphic markers on the long arm of human chromosome 21 in order to determine the parental and meiotic origin of the extra chromosome 21 in families with recurrent free trisomy 21. A total of 22 families were studied, 13 in which the individuals with trisomy 21 were siblings (category 1), four families in which the individuals with trisomy 21 were second-degree relatives (category 2), and five families in which the individuals with trisomy 21 were third-degree relatives, that is, their parents were siblings (category 3). In five category 1 families, parental mosaicism was detected, while in the remaining eight families, the origin of nondisjunction was maternal. In two of the four families of category 2 the nondisjunctions originated in individuals who were related. In only one of five category 3 families, the nondisjunctions originated in related individuals. These results suggest that parental mosaicism is an important etiologic factor in recurrent free trisomy 21 (5 of 22 families) and that chance alone can explain the recurrent trisomy 21 in many of the remaining families (14 of 22 families). However, in a small number of families (3 of 22), a familial predisposing factor or undetected mosaicism cannot be excluded.  相似文献   

2.
The identification of DNA polymorphisms makes it possible to classify trisomy 21 according to the parental origin and stage (meiosis I [MI], meiosis II [MII], or postzygotic mitotic) of the chromosomal error. Studying the effect of parental age on these subgroups could shed light on parental exposures and their timing. From 1989 through 1993, 170 infants with trisomy 21 and 267 randomly selected control infants were ascertained in a population-based, case-control study in metropolitan Atlanta. Blood samples for genetic studies were obtained from case infants and their parents. Using logistic regression, we independently examined the association between maternal and paternal age and subgroups of trisomy 21 defined by parental origin and meiotic stage. The distribution of trisomy 21 by origin was 86% maternal (75% MI and 25% MII), 9% paternal (50% MI and 50% MII), and 5% mitotic. Compared with women <25 years of age, women > or = 40 years old had an odds ratio of 5.2 (95% confidence interval, 1.0-27.4) for maternal MI (MMI) errors and 51.4 (95% confidence interval, 2.3-999.0) for maternal MII (MMII) errors. Birth-prevalence rates for women > or = 40 years old were 4.2/1000 births for MMI errors and 1.9/1000 for MMII errors. These results support an association between advanced maternal age and both MMI and MMII errors. The association with MI does not pinpoint the timing of the error; however, the association with MII implies that there is at least one maternal-age related mechanism acting around the time of conception.  相似文献   

3.
Trisomy 21 (Down syndrome) is one of the most common chromosomal abnormalities. Of cases of free trisomy 21 causing Down syndrome, about 95% result from nondisjunction during meiosis, and about 5% are due to mitotic errors in somatic cells. Previous studies using DNA polymorphisms of chromosome 21 showed that paternal origin of trisomy 21 occurred in only 6.7% of cases. However, these studies were conducted in liveborn trisomy 21-affected infants, and the possible impact of fetal death was not taken into account. Using nine distinct DNA polymorphisms, we tested 110 families with a prenatally diagnosed trisomy 21 fetus. Of the 102 informative cases, parental origin was maternal in 91 cases (89.2%) and paternal in 11 (10.8%). This percentage differs significantly from the 7.0% observed in previous studies (P<0.001). In order to test the influence of genomic parental imprinting, we determined the origin of the extra chromosome 21 in relation to different factors: advanced maternal age, maternal serum human chorionic gonadotropin (hormone of placental origin), severity of the disease, gestational age at diagnosis and fetal gender. We found that the increased frequency of paternal origin of nondisjunction in trisomy 21-affected fetuses cannot obviously be explained by factors leading to selective loss of paternal origin fetuses.  相似文献   

4.
The parental origin of the extra chromosome in trisomy 18 was traced in 30 informative families using highly polymorphic (CA) repeats mapped on the long arm of chromosome 18. Proband DNA was recovered from slides of chromosome preparations in 28 cases and from paraffin-embedded tissues in two cases. The extra chromosome was found to be of maternal origin in 26 cases (86.7%), and paternal origin in 4 cases (13.3%).  相似文献   

5.
Summary A total of 33 spontaneous abortuses with various acrocentric trisomies were studied for the origin of the extra chromosomes using Q- and R-band polymorphisms as markers. Eleven trisomic abortuses were informative: nine trisomic abortuses (one with trisomy 13, three with trisomy 21, and five with trisomy 22 including one with a 46,XX/47,XX,+22 mosaicism) originated at maternal first meiosis; a 21-trisomic abortus resulted from an error at maternal second meiosis (or first mitosis); and a 13-trisomic abortus was of maternal first or second meiotic origin. The abortus with mosaic trisomy 22 started as a 22-trisomic zygote resulting from an error at maternal first meiosis, followed by a mitotic (in vivo or in vitro) loss of the paternally derived chromosome 22.  相似文献   

6.
Trisomy 21: Association between reduced recombination and nondisjunction   总被引:27,自引:16,他引:11       下载免费PDF全文
To assess the association between recombination and nondisjunction of chromosome 21, we analyzed cytogenetic and DNA markers in 104 trisomy 21 individuals and their parents. Our DNA marker studies of parental origin were informative in 100 cases, with the overwhelming majority (94) being maternal in origin. This value is significantly higher than the 75%-80% maternal nondisjunction rate typically observed in cytogenetic studies of trisomy 21 and illustrates the increased accuracy of the molecular approach. Using the maternally derived cases and probing at 19 polymorphic sites on chromosome 21, we created a genetic map that spans most of the long arm of chromosome 21. The map was significantly shorter than the normal female linkage map, indicating that absence of pairing and/or recombination contributes to nondisjunction in a substantial proportion of cases of trisomy 21.  相似文献   

7.
Cell-free fetal DNA in the maternal circulation is a potential noninvasive marker for fetal aneuploidies. In previous studies with Y DNA as a fetal-specific marker, levels of circulating fetal DNA were shown to be elevated in women carrying trisomy 21 fetuses. The goal of this study was to determine whether cell-free fetal DNA levels in the serum of pregnant women carrying fetuses with trisomies 13 or 18 are also elevated. Archived maternal serum samples from five cases of male trisomy 13 and five cases of male trisomy 18 were studied. Each case was matched for fetal gender, gestational age, and duration of freezer storage to four or five control serum samples presumed to be euploid after newborn medical record review. Real-time quantitative polymerase chain reaction amplification of DYS1 was performed to measure the amount of male fetal DNA present. Unadjusted median serum fetal DNA concentrations were 97.5 GE/ml (genomic equivalents per milliliter; 29.2-187.0) for the trisomy 13 cases, 31.5 GE/ml (18.6-77.6) for the trisomy 18 cases, and 40.3 GE/ml (3.7-127.4) for the controls. Fetal DNA levels in trisomy 13 cases were significantly elevated ( P=0.016) by analysis of variance of the ranks of values within each matched set. In contrast, fetal DNA levels in trisomy 18 cases were no different from the controls ( P=0.244). Second trimester maternal serum analytes currently used in screening do not identify fetuses at high risk for trisomy 13. Fetal DNA may facilitate noninvasive screening for trisomy 13 provided that a gender-independent fetal DNA marker can be developed.  相似文献   

8.
Parental origin of the extra chromosome in Down's syndrome   总被引:13,自引:1,他引:12  
Summary Chromosome 21 fluorescent heteromorphisms were studied in 42 patients with Down's syndrome, their parents and their siblings. Included in this number are two instances of an aunt and niece affected with trisomy 21, and one of affected siblings. One case has a de novo 21/21 translocation. Blood group, red cell and serum protein markers were also studied for linkage, gene exclusions, associations, and paternity testing. Thirty-one of the trisomy 21 cases were informative for parental origin of the extra chromosome and for stage of meiosis. The non-disjunctional event was of maternal origin in 24; 23 occurred in meiosis I, 1 in meiosis II. Seven were of paternal origin; 5 in meiosis I, and 2 in meiosis II. The translocation case was of paternal origin. A literature search revealed a total of 98 cases informative for the parent of origin of the extra chromosome, of >347 families tested. In addition, 3 de novo translocation cases, of 7 tested, were informative. The data suggest that most cases result from an error in the first meiotic division in the mother, but that a significant proportion are paternal in origin.  相似文献   

9.
Axelrod and Hamilton (Science 211:1390, 1981) suggested that trisomies may result from an end-game strategy between chromosomes competing to get on the gamete as the mother approaches menopause. We tested this hypothesis by reviewing studies of the parental origin of the extra chromosome in trisomy 21 births. These data show that there is no significant rise in trisomy 21 conceptions as the mother ages. The increase in trisomies with maternal age results not from an increase in nondisjunctions, but from a decrease in rejection of trisomy zygotes, which may be adaptive for the mother towards the end of her reproductive life. This decreasing rate of rejection may result from the changing inclusive benefits of two maternal strategies as menopause approaches.  相似文献   

10.
By combining molecular and cytogenetic techniques, we demonstrated the feasibility and desirability of a comprehensive approach to analysis of nondisjunction for chromosome 21. We analyzed the parental origin and stage of meiotic errors resulting in trisomy 21 in each of five families by successfully using cytogenetic heteromorphisms and DNA polymorphisms. The 16 DNA fragments used to detect polymorphisms spanned the length of the long arm and detected recombinational events on nondisjoined chromosomes in both maternal meiosis I and maternal meiosis II errors. The meiotic stage at which errors occurred was determined by sandwiching the centromere between cytogenetic heteromorphisms on 21p and an informative haplotype constructed using two polymorphic DNA probes that map to 21q just below the centromere. This study illustrates the necessity of combining cytogenetic polymorphisms on 21p with DNA polymorphisms spanning 21q to determine (1) the source and stage of meiotic errors that lead to trisomy 21 and (2) whether an association exists between nondisjunction and meiotic recombination.  相似文献   

11.
Molecular studies of trisomy 18.   总被引:8,自引:3,他引:5       下载免费PDF全文
We have determined the parental origin of 50 cases of trisomy 18. In 48 cases the additional chromosome was maternal in origin, and in 2 cases it was paternal in origin. Seven cases, including both those with an additional paternal chromosome, appeared to be the result of postzygotic error. In contrast to the situation in nondisjunction involving chromosomes 21 and X, there was no evidence for nullochiasmate nondisjunction.  相似文献   

12.
Molecular studies were performed on 101 cases of confined placental mosaicism (CPM) involving autosomal trisomy. The origin of the trisomic cell line was determined in 54 cases (from 51 pregnancies), 47 of which were also analyzed for the presence of uniparental disomy (UPD) in the disomic cell line. An additional 47 cases were analyzed for parental origin in the disomic cell line only. A somatic (postmeiotic) origin of the trisomy was observed in 22 cases and included the majority of cases with CPM for trisomy 2, 7, 8, 10, and 12. Most cases of CPM involving trisomy 9, 16, and 22 were determined to be meiotic. Fetal maternal UPD was found in 17 of 94 informative CPM cases, involving trisomy 2 (1 case), 7 (1 case), 16 (13 cases), and 22 (2 cases). The placental trisomy was of meiotic origin in all 17 cases associated with fetal UPD (P = .00005). A meiotic origin also correlated with the levels of trisomy in cultured chorionic villi samples (CVS) (P = .0002) and trophoblast (P = .00005). Abnormal pregnancy outcome (usually IUGR) correlated with meiotic origin (P = .0003), the presence of fetal UPD (P = 4 x 10(-7)), and the level of trisomy in trophoblast (P = 3 x 10(-7)) but not with the level of trisomy in CVS or term chorion. The good fit of somatic errors with the expected results could have been observed only if few true meiotic errors were misclassified by these methods as a somatic error. These data indicate that molecular determination of origin is a useful predictor of pregnancy outcome, whereas the level of trisomy observed in cultured CVS is not. In addition, UPD for some chromosomes may affect prenatal, but not postnatal, development, possibly indicating that imprinting effects for these chromosomes are confined to placental tissues.  相似文献   

13.
It is tempting to assume that the maternal age effect in trisomy 21 is confined to cases arising from errors of maternal gametogenesis. However, it has been suggested that this hypothesis is incompatible with the results of studies, based on the subjective assessment of chromosome polymorphisms, of the parental origin of the additional chromosome. Contrary to the hypothesis, these studies appear to indicate that the ratio of maternal to paternal errors does not depend significantly on maternal age. I show here that the hypothesis need not be rejected if the proportion of published parental assignments that are incorrect is greater than or equal to 8%, a figure regarded as realistic by some experienced cytogeneticists.  相似文献   

14.
Partial Trisomy 14q is a rare chromosomal disorder that mostly results from a parental translocation. We report here a newborn boy with partial trisomy 14q and dysmorphic features that are compatible with previously reported cases. Conventional cytogenetic analysis revealed an extra chromosomal segment at the end of the short arm of chromosome 4. In order to determine the origin of this chromosome region we used subtelomeric FISH technique. Based on the results of these cytogenetic studies and the physical examination, this dysmorphic case was diagnosed as partial trisomy of 14q and his karyotype determined as 46 XY, der(4)t(4;14)(p16;q32) resulting from a balanced maternal translocation identified as 46,XX, t(4;14)(p16;q32).  相似文献   

15.
The present report summarizes molecular studies on the parent and meiotic stage of origin of the additional chromosome in 432 fetuses or liveborns with an additional chromosome 13, 14, 15, 21, or 22. Our studies suggest that there is little variation in the origin of nondisjunction among the five acrocentric trisomies and that there is no association between the origin of nondisjunction and the likelihood of survival to term of the trisomic conceptus. The proportion of cases of paternal origin was similar among the five trisomies: 12% for trisomy 13, 17% for trisomy 14, 12% for trisomy 15, 9% for trisomy 21, and 11% for trisomy 22. The stage of nondisjunction was also similar among the five trisomies, with the majority of cases of maternal origin being due to nondisjunction at meiosis I, whereas for paternally derived cases, nondisjuction occurred primarily at meiosis II.  相似文献   

16.
Summary The parental origin of the extra chromosome 21 was studied in 20 patients with trisomy 21-associated transient myeloproliferative syndrome (TMS) using chromosomal heteromorphisms as markers; this was combined with a study of DNA polymorphisms in 5 patients. Of these, 10 were shown to result from duplication of a parental chromosome 21, viz., maternal in 8 and paternal in 2. A patient with Down syndrome-associated TMS had a paracentric inversion in two of his three chromosomes 21 [47,XY,-21, +inv(21)(q11.2q22.13)mat, +inv(21)(q11.2 q22.13)mat). These findings support our hypothesis of disomic homozygosity of a mutant gene on chromosome 21 in 21-trisomic cells as being a mechanism responsible for the occurrence of TMS. The finding also suggests that the putative TMS gene locus is at either 21q11.2 or 21q22.13, assuming that the gene is interrupted at either site because of the inversion. The study of 5 TMS patients using DNA polymorphic markers detected a cross-over site on the duplicated chromosomes 21 between 21q11.2 (or q21.2) and 21q21.3 in one patient, and a site between 21q21.3 and q22.3 in another patient, evidence that confined the gene locus to the 21cen-q21.3 segment. These findings suggest that the putative TMS gene is located at 21q11.2. The extra chromosome 21 in the latter two TMS patients probably resulted from maternal second meiotic non-disjunction, in view of the presence of recombinant heterozygous segments on their duplicated chromosomes 21.  相似文献   

17.
We have determined the parental origin in eight cases of constitutional trisomy 8. In all four cases of spontaneous abortion, the additional chromosome was maternal in origin and there was evidence for nullichiasmate meiosis I occurring in the genesis of this trisomy. In contrast, all four cases of liveborn trisomy 8 appear to have arisen by a mechanism consistent with the post-zygotic mitotic gain of the additional chromosome.  相似文献   

18.
Non-invasive prenatal testing (NIPT) demonstrated a small chance for a false negative result. Since the “fetal” DNA in maternal blood originates from the cytotrophoblast of chorionic villi (CV), some false negative results will have a biological origin. Based on our experience with cytogenetic studies of CV, we tried to estimate this risk. 5967 CV samples of pregnancies at high risk for common aneuplodies were cytogenetically investigated in our centre between January 2000 and December 2011. All cases of fetal trisomy 13, 18 and 21 were retrospectively studied for the presence of a normal karyotype or mosaicism < 30% in short-term cultured (STC-) villi. 404 cases of trisomies 13, 18 and 21 were found amongst 5967 samples (6,8%). Of these 404 cases, 14 (3,7%) had a normal or low mosaic karyotype in STC-villi and therefore would potentially be missed with NIPT. It involved 2% (5/242) of all trisomy 21 cases and 7.3% (9/123) of all trisomy 18 cases. In 1:426 (14/5967) NIPT samples of patients at high risk for common aneuploidies, a trisomy 18 or 21 will potentially be missed due to the biological phenomenon of absence of the chromosome aberration in the cytotrophoblast.  相似文献   

19.
Summary Tissue cultures were initiated from 130 spontaneous abortion specimens and 81 were successfully karyotyped. Chromosome abnormalities were found in 50 cases: 12 with XO, 27 with trisomy, 6 with triploidy, 1 with tetraploidy and 4 others. The parental origin was determined in 11 cases of trisomy for an acrocentric chromosome. Two cases were uninformative while 9 non-disjunctions were determined and occurred during meiosis I: 7 were maternal and 2 paternal (both with trisomy 21). Three out of 7 cases with trisomy 16 were informative and resulted from a divisional error during the first meiotic division in the mother. All cases of triploidy were informative. They resulted from non-reduction during meiosis I in the mother (2) or dispermy (4).  相似文献   

20.
Summary Knowledge about the parental origin of new mutations and the occurrence of germline mosaicism is important for estimating recurrence risks in Duchenne (DMD) and Becker muscular dystrophy (BMD). However, there are problems in resolving these issues partly because not all mutations can as yet be directly detected, and additionally because genetic ratios are very sensitive to ascertainment bias. In the present study, therefore, analysis was restricted to currently detectable mutations (deletions and duplications) in particular types of families which tend to be rare. In order to obtain sufficient data we pooled results from 25 European centers. In mothers of affected patients who were the first in their family with a dystrophin gene deletion or duplication, the ratio between the paternal and the maternal origin of this new mutation was 32:49 (binomial test P = 0.075) for DMD. In five BMD families the ratio between paternal and maternal origin of new mutations was 32. Recurrence risk because of maternal germline mosaicism was studied in sisters or subsequent sibs of isolated cases with an apparently new detectable mutation. In 12 out of 59 (0.20; 95% CI 0.10–0.31) transmissions of the risk haplotype the DMD mutation was transmitted as well. No recurrences were found in nine BMD families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号