首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction between chicken gizzard caldesmon and tropomyosin   总被引:1,自引:0,他引:1  
Chicken gizzard muscle caldesmon has been examined for ability to interact with tropomyosin from chicken gizzard muscle by using fluorescence enhancement of tropomyosin labeled with dansyl chloride (DNS) and affinity chromatography. The binding of caldesmon to tropomyosin was regulated by Ca2+ and calmodulin, i.e., at low ionic strength most of the caldesmon bound to tropomyosin-Sepharose 4B was co-eluted by adding calmodulin only in the presence of Ca2+, but not in its absence. This regulation by Ca2+ and calmodulin was also suggested by fluorescence measurements. Actin- and calmodulin-binding sites on the caldesmon molecule were located in the 38K fragment (Fujii, T., Imai, M., Rosenfeld, G.C., & Bryan, J. (1987) J. Biol. Chem. 262, 2757-2763). When 38K-enriched fraction was applied to the tropomyosin-Sepharose, the 38K fragment was retained by the column and could be eluted by adding Ca2+ and calmodulin.  相似文献   

2.
The calcium-dependent difference absorption spectrum of scallop calmodulin was measured in the presence of mastoparan. The difference spectrum at 286 nm (delta A286) showed biphasic response to Ca2+ concentration. The first change represents the conformational change around Tyr-138 and the second change may respond to an interaction between N- and C-domain of calmodulin which became apparent in the associated state with mastoparan. Calmodulin-mastoparan complex was eluted from a gel filtration column after free calmodulin in the presence of Ca2+, which indicates a more compact structure of calmodulin-mastoparan complex than of free calmodulin. The biphasic response of delta A286 was also observed with free calmodulin when the ionic strength was as low as 0.02 M NaCl. In the absence of NaCl, the Ca2+ dependence of delta A288 was monophasic, assuming identical affinity of Ca2+ to both domains. Increase in the sensitivity of calmodulin to trypsin was observed with decrease in ionic strength. These results suggest an ionic-strength-dependent decrease in ordered structure of the connecting region. Calmodulin may change shape depending upon the ionic strength by bending at the connecting region. We assumed from the observations that calmodulin in solution may fluctuate between the two extreme shapes of the bent and the dumbbell structure. Target proteins may select and fix the specific bent structure for their activation.  相似文献   

3.
To investigate the role of the Ca2+-binding protein calmodulin on histamine release in the rat peritoneal mast cell, we exposed cells to exogenous calmodulin in the presence of a variety of histamine secretagogues. Histamine release stimulated by compound 48/80, polymyxin B and ionophore A23187 was inhibited while concanavalin A-stimulated release was not affected. Calmodulin in the presence of the secretagogues did not affect cell viability and calmodulin alone had no effect on histamine release. No direct interaction between calmodulin and the secretagogues was observed. Exogenous calmodulin does not appear to be incorporated into the cell. The inhibition of histamine release by calmodulin can be explained as a labile interaction between the protein and the cell that requires externally-bound Ca2+. These experiments demonstrate the use of exogenous calmodulin as a probe in the study of the mechanism of histamine release.  相似文献   

4.
The hepatic microsomal fraction contains tightly bound calmodulin as demonstrated by affinity chromatography. When this calmodulin was partially removed by EGTA treatment (0.5 mM-EGTA), the uptake of 45Ca2+ by the microsomal vesicles was stimulated by added calmodulin and inhibited by trifluoperazine (TFP). The Ca2+-dependent ATPase was partially purified on a calmodulin column. This partial purification resulted in a 500-fold increase in the specific activity of the enzyme when measured in the presence of added calmodulin. Antibodies prepared against calmodulin prevented this stimulatory effect. The fraction eluted from the calmodulin column contained several protein bands indicating that the specific activity of the Ca2+-dependent ATPase is probably still underestimated. There are likely to be other calmodulin-sensitive processes present in the hepatic microsomal fraction.  相似文献   

5.
Ca(2+)-dependent protein kinase (CDPK) was purified 900-fold from the soluble fraction of Dunaliella tertiolecta cells by ammonium sulfate precipitation, DEAE-Toyopearl, phenyl-Sepharose, and hydroxylapatite column chromatography. The CDPK was activated by micromolar concentration of Ca2+ and required neither calmodulin nor phospholipids for its activation. The enzyme phosphorylated casein, myosin light chain, and histone type III-S (histone H-1), but did not phosphorylate protamine and phosvitin. The Km values for ATP and casein were 11 microM and 300 micrograms/ml, respectively. Phosphorylation of casein was inhibited by calmodulin antagonists, calmidazolium, trifluoperazine, and compound 48/80, but not affected by calmodulin. CDPK bound to phenyl-Sepharose in the presence of Ca2+ and was eluted by ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA). This suggests that hydrophobicity of the enzyme was increased by Ca2+. CDPK was also bound to the microsomes isolated from Dunaliella cells in the presence of micromolar concentration of Ca2+ and released in the presence of EGTA, suggesting the possibility of in vivo Ca(2+)-dependent association of the enzyme. The enzyme phosphorylated many proteins in the microsomes but few in the cytosol, if at all.  相似文献   

6.
Several Ca2+ antagonists with either Ca2+-entry blocking or calmodulin (CaM) antagonistic properties and antiallergic drugs were investigated for their effects on mediator release from mast cells induced by different secretagogues (compound 48/80, concanavalin A, antigen-IgE and Ca2+ ionophore A23187) and for their ability to inhibit the function of CaM or phospholipid/Ca2+-dependent protein kinase (C-kinase). The effects of the different agents--with the only exception of cromolyn sodium--on histamine release elicited by compound 48/80 correlated well with their actions on two CaM-dependent enzymes whereas the activity of C-kinase was far less altered, or not altered at all. CaM antagonism of cloxacepride, picumast, oxatomide, fendiline and bepridil correlated not only with the inhibition of exocytosis evoked by compound 48/80 but also with that induced by A23187, concanavalin A and antigen-IgE. This indicates an action of these substances distal to the generation of the Ca2+ signal since the various secretagogues elevate the intracellular Ca2+ concentration by different mechanisms. However, prenylamine and thioridazine inhibited concanavalin A- and antigen-IgE-induced mediator release more potently and more effectively than that elicited by compound 48/80 or A23187. Therefore inhibition of allergic histamine release by these drugs may in part be dependent on an impairment of the Ca2+ signal. Since for each of two agents inhibition of histamine release (evoked by different releasers) parallels that of serotonin release it may be concluded that these mediators are secreted via the same mechanism. The results obtained with agents exhibiting different pharmacological properties but which share one common property, namely antagonism of CaM, strengthen the view that CaM is involved in exocytosis of mediators from mast cells.  相似文献   

7.
A new calmodulin (CaM) binding protein, designated P-57, has been purified to apparent homogeneity from bovine cerebral cortex membranes. In contrast to other calmodulin binding proteins, P-57 has higher affinity for calmodulin in the absence of bound Ca2+ than in its presence. The protein was purified by DEAE-Sephacel chromatography and two CaM-Sepharose affinity column steps. The first CaM-Sepharose column was run in the presence of Ca2+; the second was run in the presence of chelator in excess of Ca2+. P-57 was adsorbed by CaM-Sepharose only in the absence of bound Ca2+ and was eluted from the second column by buffers containing Ca2+. Sodium dodecyl sulfate (SDS)-polyacrylamide gels of the purified protein showed only one band at Mr 57 000. The major form of the protein on Bio-Gel A-1.5m and native polyacrylamide gradient gel electrophoresis ran with an apparent Stokes radius of 41 A. Photoaffinity labeling of P-57 with azido[125I]calmodulin yielded one cross-linked product on SDS gels with an Mr of 70 000. This interaction occurred only when excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid was present and was inhibited by the presence of Ca2+ in excess of chelator. It appears that P-57 has novel binding properties for calmodulin distinct from all other calmodulin binding proteins described thus far.  相似文献   

8.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

9.
The involvement of extracellular free Ca2+ in histamine release was investigated in rat peritoneal mast cells. Incubation of non-antigenized cells in a media with high extracellular potassium did not increase histamine release. Secretion induced by A23187 and compound 48/80 in the presence of Ca2+ requires metabolic energy. In the absence of external free Ca2+ (2.5 microM) histamine release induced by A23187 is reduced but not abolished. Secretion induced by compound 48/80 is independent of extracellular Ca2+. These results lead us to suggest that mast cell plasma membranes probably lack voltage-gated Ca2+ channels and that external Ca2+ may not be an absolute requisite for histamine secretion.  相似文献   

10.
The effect of the calmodulin antagonist, compound 48/80, on the Ca2+ release from skeletal muscle sarcoplasmic reticulum was investigated. Both the Ca2+ release by reversal of the Ca2+ pump and the Ca2+ release by the Mg2(+)-controlled Ca2+ channel were studied. It was observed that, when reversal of the pump is inoperative and Mg2+ is not present in the reaction medium, 48/80 stimulates Ca2+ release from the vesicles. In contrast, in the presence of Mg2+, which blocks the Ca2+ channel, 48/80 inhibits Ca2+ release induced by ADP and Pi. This effect is strong at low concentrations of Pi (approximately 1 mM), whereas high concentrations (approximately 15 mM) protect the system against the drug. Furthermore, it was observed that 48/80 has a maximum effect on the channel-mediated Ca2+ release at concentrations of about 20 micrograms/ml, whereas maximal inhibition of the pump-mediated Ca2+ release occurs at concentrations of about 60-80 micrograms/ml. The results indicate that both the Ca2+ channel complex and the Ca2(+)-ATPase may be target systems for the effects of 48/80 on the Ca2+ transport activity of sarcoplasmic reticulum. However, the Ca2+ channel is more sensitive to the drug, suggesting an involvement of calmodulin on this mechanism of Ca2+ release.  相似文献   

11.
The activity of inositol-1,4,5-trisphosphate 3-kinase in the cytosol fraction of guinea pig macrophages was assayed with special reference to the dependence on the free Ca2+ concentration. The enzyme activity, as assessed by the production of inositol 1,3,4,5-tetrakisphosphate was reversibly activated by free Ca2+ concentrations ranging from 10(-7) to 10(-6)M. The calmodulin antagonists, W-7 and chlorpromazine, inhibited the Ca2+-activated enzyme activity in a dose-dependent fashion, thereby indicating that calmodulin may be involved in the activation by Ca2+. The content of calmodulin in the cytosol fraction (about 2.8 micrograms/mg of cytosol protein) was markedly reduced to less than 0.03 microgram/mg of proteins by subfractionation by ammonium sulfate, followed by an anion-exchange chromatography. The subfraction obtained by the chromatography showed no Ca2+ dependence in the enzyme activity, while an exogenous addition of calmodulin with 10(-6)M Ca2+ increased the enzyme activity. The enzyme activity was retained on a calmodulin-affinity column in the presence of Ca2+, and was eluted from the column by lowering the free Ca2+ concentration by adding ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. These results clearly indicate that calmodulin activates the inositol-1,4,5-trisphosphate 3-kinase activity.  相似文献   

12.
Hydrophobic interaction chromatography is employed to determine if calmodulin might associate with its target enzymes such as cyclic nucleotide phosphodiesterase and calcineurin through its Ca2+-induced hydrophobic binding region. The majority of protein in a bovine brain extract that binds to a calmodulin-Sepharose affinity column also is observed to bind in a metal ion-independent manner to phenyl-Sepharose through hydrophobic interactions. Cyclic nucleotide phosphodiesterase activity that is bound to phenyl-Sepharose can be resolved into two activity peaks; one peak of activity is eluted with low ionic strength buffer, while the second peak eluted with an ethylene glycol gradient. Calcineurin bound tightly to the phenyl-Sepharose column and could only be eluted with 8 M urea. Increasing ethylene glycol concentrations in the reaction mixture selectively inhibited the ability of calmodulin to stimulate phosphodiesterase activity, suggesting that hydrophobic interaction is required for activation. Comparison of the proteins which are bound to and eluted from phenyl- and calmodulin-Sepharose affinity columns indicates that chromatography involving calmodulin-Sepharose resembles hydrophobic interaction chromatography with charged ligands. In this type of interaction, hydrophobic binding either is reinforced by electrostatic attractions or opposed by electrostatic repulsions to create a degree of specificity in the binding of calmodulin to certain proteins with accessible hydrophobic regions.  相似文献   

13.
We have demonstrated calcium-dependent hydrophobic interactions among calmodulin, S-100 protein and troponin-C and a homologous series of omega-aminoalkyl-agaroses. The three Ca2+-binding proteins were retained on the column of agarose substituted with omega- aminooctyl or even longer with alkylamine, in the presence of Ca2+ and 0.15 M NaCl. As these proteins were not retained on the column with shorter alkylamine 'arms' (N = 2, 4), they are probably successively absorbed with a higher affinity to the hydrophobic agarose column. Calmodulin and S-100 protein were eluted from the aminoocytl -agarose column with 1 mM EGTA in the presence of 0.15 M NaCl and the elution of troponin-C was Ca2+-independently carried out with 0.3 M NaCl. On the other hand, S-100 and troponin-C were eluted Ca2+-dependently from aminodecyl -agarose in the presence of 1 M NaCl and half the amount of the calmodulin applied was eluted with 1 M NaCl. As there are obvious differences among the three Ca2+-binding proteins with regard to chromatographic behavior on omega-aminoalkyl-agarose columns, our results suggest that these three proteins expose different hydrophobic regions following Ca2+-induced conformational changes and, if so, such would explain the interaction with aminoalkyl-agaroses.  相似文献   

14.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

15.
This study examines the pattern and regulatory properties of cyclic nucleotide phosphodiesterases in a human lymphoblastoid B-cell line (RPMI 8392) established from a patient with acute lymphocytic leukaemia. In this cell line, phosphodiesterase activity measured at 0.25 microM-cyclic AMP is approx. 7-fold greater than that in isolated human peripheral-blood lymphocytes, and 16% of the phosphodiesterase activity in RPMI 8392 cells is associated with particulate fractions. Phosphodiesterase activity in crude fractions of this cell line is reproducibly stimulated by about 60-80% by Ca2+-calmodulin. In the presence of 20 nM-calmodulin, half-maximal stimulation occurs at 0.7 microM-Ca2+. The cytosolic phosphodiesterase activity of RPMI 8392 cells is separated into two forms by DEAE-Sephacel chromatography. The first form is eluted at approx. 0.2 M-sodium acetate, catalyses the hydrolysis of both cyclic AMP and cyclic GMP, and is stimulated 3-fold by Ca2+-calmodulin. This form exhibits non-linear kinetics for cyclic AMP in the absence of calmodulin, with extrapolated Km values of 0.8 and 4 microM, and non-linear kinetics in the presence of calmodulin, with extrapolated Km values of 0.5 and 1 microM. The Vmax. values are increased approx. 3-fold by calmodulin. The second form is eluted at approx. 0.6 M-sodium acetate, is specific for cyclic AMP, and insensitive to stimulation by Ca2+-calmodulin. The Ca2+-calmodulin-sensitive phosphodiesterase from the DEAE-Sephacel column can be adsorbed to a calmodulin-Sepharose affinity column and eluted with EGTA. This enzymic activity can also be immunoprecipitated by a monoclonal antibody directed against a calmodulin-bovine heart phosphodiesterase complex. This study documents the existence of Ca2+-calmodulin-sensitive phosphodiesterase in a cultured lymphoblastoid cell line derived from a leukaemic patient.  相似文献   

16.
The binding of Ca2+ to calmodulin and its two tryptic fragments has been studied using microcalorimetry. The binding process is accompanied by the uptake or release of protons, depending on the ionic strength. With no added salt, the total enthalpy change for the binding of four calcium ions to calmodulin is -41 kJ mol-1 but in the presence of 0.15 mM KCl delta Htot is +17 kJ mol-1. The mode of binding of Ca2+ is also completely different with and without added salt. It is also shown that for the C-terminal fragment of calmodulin, TR2C, the drastic reduction in delta Gtot for the binding process on increasing the ionic strength is largely an enthalpic effect. Domain interactions in calmodulin are indicated by the fact that the sum of the enthalpies of calcium binding to the two tryptic fragments is not the same as the total binding enthalpy to calmodulin itself. The binding of Ca2+ to calmodulin has also been studied calorimetrically at different temperatures in the range 21-37 degrees C. delta Cp is large and negative in this interval.  相似文献   

17.
Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.  相似文献   

18.
The effects of calmodulin (CaM) on inositol 1,4,5-trisphosphate (InsP3) 3-kinase activity in pig aortic smooth muscle were examined. The cytosol fraction of muscle cells, containing 1.2-2.0 micrograms of CaM/mg of cytosol protein (thus 0.12-0.2%, w/w), showed a Ca2+-dependent InsP3 3-kinase activity, and there was no further activation by exogenous addition of CaM purified from dog brain. (NH4)2SO4 fractionation of the cytosol fraction revealed that a 20-60%-satd.-(NH4)2SO4 fraction was rich in the enzyme activity, and the activity without exogenous CaM was still dependent on Ca2+, although the CaM content in this fraction was minute (0.013-0.016%, w/w). The kinase activity observed in the absence of exogenous CaM became insensitive to Ca2+ when a 20-60%-satd.-(NH4)2SO4 fraction was applied to a DEAE-cellulose column, but exogenous addition of CaM increased the enzyme activity from 80-120 to 450 pmol/min per mg of protein, with addition of 10 microM free Ca2+. A fraction separated by DEAE-cellulose chromatography was applied to a CaM affinity column. The kinase activity was retained on the column in the presence of Ca2+, and was eluted by lowering the free Ca2+ concentration by adding EGTA. These results directly show that CaM activates InsP3 3-kinase activity and the enzyme becomes sensitive to Ca2+.  相似文献   

19.
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin.  相似文献   

20.
Human lymphocytes and rat mast cells, two non-excitable cellular models, were used to investigate membrane potential changes accompanying Ca2+ signals. Cells were stimulated with agents known to induce both Ca2+ release from internal stores and influx of extracellular Ca2+, namely thapsigargin, ionomycin and compound 48/80. Thapsigargin and ionomycin were used to activate lymphocytes, while compound 48/80 was used to stimulate mast cells. Membrane potential changes and Ca2+ concentration were monitored with the fluorescent dyes bis-oxonol and fura-2, respectively. In lymphocytes, thapsigargin induced a hyperpolarization temporally correlated with the increase in intracellular Ca2+ concentration. This hyperpolarization is due to activation of a K+ conductance which consists of two phases, a first phase independent on external Ca2+ and a second one blocked in a Ca2+-free medium. Ionomycin induced a Ca2+-dependent depolarization attributed to a massive influx of external Ca2+. On the other hand, stimulation of mast cells with compound 48/80 produced a fast hyperpolarization and an increase in intracellular Ca2+ levels. Besides different time-courses, this hyperpolarization differs from that induced by thapsigargin in lymphocytes in two aspects, it is mainly due to a Cl(-)-entry current and exit of K+ and it is completely inhibited in the absence of extracellular Ca2+. Compound 48/80-induced histamine release is not related to membrane potential changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号