首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a (Pheo a ) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a . The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a . Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I Photosystem I - PS II Photosystem II - RC reaction center - P680 primary electron donor in Photosystem II - Chl a chlorophyll a - Pheo a pheophytin a  相似文献   

2.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA -. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA -.Abbreviations A830 Absorption change at 830 nm - Chl Chlorophyll - D1 primary electron donor to P680 - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - MOPS 3-(N-morpholino)propanesulfonic acid - P680 reaction center chlorophyll a molecule of photosystem II - PPBQ Phenyl-p-benzoquinone - PS II Photosystem II - QA, QB first and second quinone acceptors in PS II - V-DCIP rate of DCIP reduction - V-O2 rate of oxygen evolution - Y water-oxidizing enzyme system - CHAPS 3-Cyclohexylamino-propanesulfonic acid  相似文献   

3.
The reversible inhibition of Photosystem II by salicylaldoxime was studied in spinach D-10 particles by fluorescence, optical absorption, and electron spin resonance spectroscopy. In the presence of 15 mM salicylaldoxime, the initial fluorescence yield was raised to the level of the maximum fluorescence, indicating efficient charge recombination between reduced pheophytin (Ph) and P680+. In agreement with the rapid (ns) backreaction expected between Ph and P680+, the optical absorption transient at 820 mm was not observed. When the particles were washed free of salicylaldoxime, the optical absorption transient resulting from the rereduction of P680+ was restored to the µs timescale. These results, along with the previously observed inhibition of electron transport reactions and diminution of the 515-nm absorption change in chloroplasts [Golbeck, J.H. (1980) Arch Biochem Biophys 202, 458–466], are consistent with a site of inhibition between Ph and QA in Photosystem II. ESR Signal IIf and Signal Its were abolished in the presence of 25 mM salicylaldoxime, but both signals could be recovered by washing the D-10 particles free of the inhibitor. The loss of Signal Ilf is most likely a consequence of the inhibition between Ph and QA; the rapid charge recombination between Ph and P680+ would preclude electron transfer from an electron donor on the oxidizing side of Photosystem II. The loss of Signal Its may be due to a change in the environment of the donor complex such that the semiquinone radical giving rise to Signal Its interacts with a nearby reductant.Abbreviations D1 electron donor to P680+ in oxygen-inhibited chloroplasts - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F0 prompt chlorophyll a fluorescence yield - Fi initial chlorophyll a fluorescence yield - Fmax maximum chlorophyll a fluorescence yield - Fvar variable chlorophyll a fluorescence yield - FWHM full width at half maximum - Mes 2-(N-morpholino) ethanesulfonic acid - P680 reaction center chlorophyll a of photosystem II - Ph pheophytin intermediate electron acceptor - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - Tris tris(hydroxymethyl)aminomethane - Z electron donor to P680+  相似文献   

4.
Low temperature (4.2 K) absorption and hole burned spectra are reported for a stabilized preparation (no excess detergent) of the photosystem II reaction center complex. The complex was studied in glasses to which detergent had and had not been added. Triton X-100 (but not dodecyl maltoside) detergent was found to significantly affect the absorption and persistent hole spectra and to disrupt energy transfer from the accessory chlorophyll a to the active pheophytin a. However, Triton X-100 does not significantly affect the transient hole spectrum and lifetime (1.9 ps at 4.2 K) of the primary donor state, P680*. Data are presented which indicate that the disruptive effects of Triton X-100 are not due to extraction of pigments from the reaction center, leaving structural perturbations as the most plausible explanation. In the absence of detergent the high resolution persistent hole spectra yield an energy transfer decay time for the accessory Chl a QY-state at 1.6 K of 12 ps, which is about three orders of magnitude longer than the corresponding time for the bacterial RC. In the presence of Triton X-100 the Chl a QY-state decay time is increased by at least a factor of 50.Abbreviations PS I photosystem I - PS II photosystem II - RC reaction center - P680, P870, P960 the primary electron donor absorption bands of photosystem II, Rhodobacter sphaeroides, Rhodopseudomonas viridis - NPHB nonphotochemical hole burning - TX Triton X-100 - DM Dodecyl Maltoside - Chl chlorophyll - Pheo pheophytin - ZPH ero phonon hole  相似文献   

5.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100–300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680+ Phe-) and charge stabilization (formation of P-680+ QA -), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8–1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNB m-dinitrobenzene - PPBQ phenyl-p-benzoquinone - PS I photosystem I of green plants - PS II photosystem II of green plants - PSU photosynthetic unit - P-680 primary donor of PS II - Phe intermediary pheophytin acceptor of PS II - QA primary quinone acceptor of PS II - RC reaction center  相似文献   

6.
The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial excited-state populations in the inner and outer antenna system. The non-exponential fluorescence decay appears to be 4.3 ± 1.8 ps slower upon 484 nm excitation for preparations that contain on average 2.45 LHCII (light-harvesting complex II) trimers per reaction center. Using a recently introduced coarse-grained model it can be concluded that the average migration time of an electronic excitation towards the RC contributes ~ 23% to the overall average trapping time. The migration time appears to be approximately two times faster than expected based on previous ultrafast transient absorption and fluorescence measurements. It is concluded that excitation energy transfer in PSII follows specific energy transfer pathways that require an optimized organization of the antenna complexes with respect to each other. Within the context of the coarse-grained model it can be calculated that the rate of primary charge separation of the RC is (5.5 ± 0.4 ps)− 1, the rate of secondary charge separation is (137 ± 5 ps)− 1 and the drop in free energy upon primary charge separation is 826 ± 30 cm− 1. These parameters are in rather good agreement with recently published results on isolated core complexes [Y. Miloslavina, M. Szczepaniak, M.G. Muller, J. Sander, M. Nowaczyk, M. Rögner, A.R. Holzwarth, Charge separation kinetics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study, Biochemistry 45 (2006) 2436-2442].  相似文献   

7.
In Cryptomonas rufescens (Cryptophyceae), phycoerythrin located in the thylakoid lumen is the major accessory pigment. Oxygen action spectra prove phycoerythrin to be efficient in trapping light energy.The fluorescence excitation spectra at ?196°C obtained by the method of Butler and Kitajima (Butler, W.L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85) indicate that like in Rhodophycease, chlorophyll a is the exclusive light-harvesting pigment for Photosystem I.For Photosystem II we can observe two types of antennae: (1) a light-harvesting chlorophyll complex connected to Photosystem II reaction centers, which transfers excitation energy to Photosystem I reaction centers when all the Photosystem II traps are closed. (2) A light-harvesting phycoerythrin complex, which transfers excitation energy exclusively to the Photosystem II reaction complexes responsible for fluorescence at 690 nm.We conclude that in Cryptophyceae, phycoerythrin is an efficient light-harvesting pigment, organized as an antenna connected to Photosystem II centers, antenna situated in the lumen of the thylakoid. However, we cannot afford to exclude that a few parts of phycobilin pigments could be connected to inactive chlorophylls fluorescing at 690 nm.  相似文献   

8.
P. Jursinic  A. Stemler 《BBA》1982,681(3):419-428
Broken chloroplasts depleted of bicarbonate (HCO?3) show 30–50% inhibition of the Hill reaction in low-intensity light. Also, photoreactions excited by repetitive flashes measured by oxygen evolution, ESR signal IIvf, and absorption changes at 680 and 334 nm show inhibition of 30–50%. An effect of HCO?3 was sought to explain these phenomena. The decay of chlorophyll a fluorescence yield in the millisecond and seconds range, following a single flash, was observed to be multiphasic with a very slow component of 1–2 s half-time. In HCO?3 -depleted samples this component is enhanced 2- or 3-fold. Since this occurs even after one flash, it is suggested that HCO?3 affects the Q? B → QB? reaction. In this work it is shown that 40% inhibition of oxygen flash yield is relieved to a great extent if the excitation flash rate is decreased from 2 to 0.33 Hz. A measurement of 520 nm absorption change in the presence of ferricyanide, which is proportional to Photosystem II charge separation, shows a similar inhibition that is dependent on flash rate. The maximum amplitude of variable fluorescence yield and 520 nm absorption change after a single flash are unaffected by HCO?3 depletion. The dark distribution of oxygen-evolution S-states is found to be shifted to a more reduced configuration in depleted samples. It is concluded that normal charge separation occurs in HCO?3 -depleted Photosystem II reaction centers but that a large fraction of Q? decays so slowly that not all Q? is reoxidized between flashes given at a rate of 1 or 2 Hz. Thus, a portion of the Photosystem II centers would be closed to photochemistry. There is a reversible effect of HCO?3 depletion on the oxygen-evolution system that is observed as a shift in the dark distribution of S-states.  相似文献   

9.
The wavelength-resolved fluorescence emission kinetics of the accessory pigments and chlorophyll a in Porphyridium cruentum have been studied by picosecond laser spectroscopy. Direct excitation of the pigment B-phycoerythrin with a 530 nm, 6 ps pulse produced fluorescence emission from all of the pigments as a result of energy transfer between the pigments to the reaction centre of Photosystem II. The emission from B-phycoerythrin at 576 nm follows a nonexponential decay law with a mean fluorescence lifetime of 70 ps, whereas the fluorescence from R-phycocyanin (640 nm), allophycocyanin (660 nm) and chlorophyll a (685 nm) all appeared to follow an exponential decay law with lifetimes of 90 ps, 118 ps and 175 ps respectively. Upon closure of the Photosystem II reaction centres with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination the chlorophyll a decay became non-exponential, having a long component with an apparent lifetime of 840 ps. The fluorescence from the latter three pigments all showed finite risetimes to the maximum emission intensity of 12 ps for R-phycocyanin, 24 ps for allophycocyanin and 50 ps for chlorophyll a.A kinetic analysis of these results indicates that energy transfer between the pigments is at least 99% efficient and is governed by an exp ?At12 transfer function. The apparent exponential behaviour of the fluorescence decay functions of the latter three pigments is shown to be a direct result of the energy transfer kinetics, as are the observed risetimes in the fluorescence emissions.  相似文献   

10.
Photosystem I particles containing 30–40 chlorophyll a molecules per primary electron donor P700 were subjected to 1.5 ps low density laser flashes at 610 nm resulting in excitation of the antenna chlorophyll a molecules followed by energy transfer to P700 and subsequent oxidation of P700. Absorbance changes were monitored as a function of time with 1.5 ps time resolution. P700 bleaching (decrease in absorbance) occurred within the time resolution of the experiment. This is attributed to the formation of 1P700.* This observation was confirmed by monitoring the rise of a broad absorption band near 810 nm due to chlorophyll a excited singlet state formation. The appearance of the initial bleach at 700 nm was followed by a strong bleaching at 690 nm. The time constant for the appearance of the 690 nm bleach is 13.7±0.8 ps. In the near-infrared region of the spectrum, the 810 nm band (which formed upon the excitation of the photosystem I particles) diminished to about 60% of its original intensity with the same 13.7 ps time constant as the formation of the 690 nm band. The spectral changes are interpreted as due to the formation of the charge separated state P700+—A0 -, where A0 is the primary electron acceptor chlorophyll a molecule.  相似文献   

11.
A detailed model for the kinetics and energetics of the exciton trapping, charge separation, charge recombination, and charge stabilization processes in photosystem (PS) II is presented. The rate constants describing these processes in open and closed reaction centers (RC) are calculated on the basis of picosecond data (Schatz, G. H., H. Brock, and A. R. Holzwarth. 1987. Proc. Natl. Acad. Sci. USA. 84:8414-8418) obtained for oxygen-evolving PS II particles from Synechococcus sp. with ~80 chlorophylls/P680. The analysis gives the following results. (a) The PS II reaction center donor chlorophyll P680 constitutes a shallow trap, and charge separation is overall trap limited. (b) The rate constant of charge separation drops by a factor of ~6 when going from open (Q-oxidized) to closed (Q-reduced) reaction centers. Thus the redox state of Q controls the yield of radical pair formation and the exciton lifetime in the Chl antenna. (c) The intrinsic rate constant of charge separation in open PS II reaction centers is calculated to be ~2.7 ps-1. (d) In particles with open RC the charge separation step is exergonic with a decrease in standard free energy of ~38 meV. (e) In particles with closed RC the radical pair formation is endergonic by ~12 meV. We conclude on the basis of these results that the long-lived (nanoseconds) fluorescence generally observed with closed PS II reaction centers is prompt fluorescence and that the amount of primary radical pair formation is decreased significantly upon closing of the RC.  相似文献   

12.
The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial excited-state populations in the inner and outer antenna system. The non-exponential fluorescence decay appears to be 4.3+/-1.8 ps slower upon 484 nm excitation for preparations that contain on average 2.45 LHCII (light-harvesting complex II) trimers per reaction center. Using a recently introduced coarse-grained model it can be concluded that the average migration time of an electronic excitation towards the RC contributes approximately 23% to the overall average trapping time. The migration time appears to be approximately two times faster than expected based on previous ultrafast transient absorption and fluorescence measurements. It is concluded that excitation energy transfer in PSII follows specific energy transfer pathways that require an optimized organization of the antenna complexes with respect to each other. Within the context of the coarse-grained model it can be calculated that the rate of primary charge separation of the RC is (5.5+/-0.4 ps)(-1), the rate of secondary charge separation is (137+/-5 ps)(-1) and the drop in free energy upon primary charge separation is 826+/-30 cm(-1). These parameters are in rather good agreement with recently published results on isolated core complexes [Y. Miloslavina, M. Szczepaniak, M.G. Muller, J. Sander, M. Nowaczyk, M. R?gner, A.R. Holzwarth, Charge separation kinetics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study, Biochemistry 45 (2006) 2436-2442].  相似文献   

13.
Primary charge separation within Photosystem II (PS II) is much slower (time constant 21 ps) than the equivalent step in the related reaction center (RC) found in purple bacteria ( 3 ps). In the case of the bacterial RC, replacement of a specific tyrosine residue within the M subunit (at position 210 in Rhodobacter sphaeroides), by a leucine residue slows down charge separation to 20 ps. Significantly the analogous residue in PS II, within the D2 polypeptide, is a leucine not a tyrosine (at position D2-205, Chlamydomonas reinhardtii numbering). Consequently, it has been postulated [Hastings et al. (1992) Biochemistry 31: 7638–7647] that the rate of electron transfer could be increased in PS II by replacing this leucine residue with tyrosine. We have tested this hypothesis by constructing the D2-Leu205Tyr mutant in the green alga, Chlamydomonas reinhardtii, through transformation of the chloroplast genome. Primary charge separation was examined in isolated PS II RCs by time-resolved optical spectroscopy and was found to occur with a time constant of 40 ps. We conclude that mutation of D2-Leu205 to Tyr does not increase the rate of charge separation in PS II. The slower kinetics of primary charge separation in wild type PS II are probably not due to a specific difference in primary structure compared with the bacterial RC but rather a consequence of the P680 singlet excited state being a shallower trap for excitation energy within the reaction center.  相似文献   

14.
《BBA》1987,893(2):320-332
The primary charge separation in Photosystem I of pea chloroplasts was measured as a photovoltage in the pico- and nanosecond time range by applying laser flashes at 532 nm of variable energy and different duration (12 ns and 30 ps, respectively). Contributions to the photovoltage from Photosystem II was eliminated by addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The dependence of the photovoltage amplitude on the excitation energy could be described by an exponential saturation law when the excitation flash had a duration of 12 ns. Nearly the same dependence was found when the excitation source was the train of a mode-locked laser (approx. ten 30-ps flashes spaced by 7 ns; highest energy of a single flash, 80 μJ / cm−2). Even with single 30-ps flashes the photovoltage was only slightly smaller than the one elicited by 12-ns flashes of the same energy. These findings demonstrate that trapping of excitation energy by the reaction center of Photosystem I is much more effective than losses by annihilation and other loss processes. The photovoltage yield was nearly independent of the fraction of closed traps, thus demonstrating that the absorption cross section of Photosystem I is not altered by the closing of its reaction centers. By recording the rise time of the photovoltage with our highest time resolution we found that the trapping rate of the excitation energy in Photosystem I depended on the energy of the 30-ps flashes: at low excitation energies (less than 1014 photons / cm2 per pulse) trapping occurred within 90 ± 15 ps and at high excitation energy (1015 photons / cm2 per pulse) trapping and charge stabilization occurred within the time resolution of the apparatus, i.e., up to 50 ps. The trapping rate at low energies is in agreement with the one determined by fluorescence decay kinetics. Up to 50 ns there was no further detectable electrogenic phase (neither forward nor backward reactions). This demonstrates that all the electrogenicity, produced by the charge separation, takes place in less than 50 ps.  相似文献   

15.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

16.
The Photosystem II reaction center is rapidly inactivated by light, particularly at higher light intensity. One of the possible factors causing this phenomenon is the oxidized primary donor, P680+, which may be harmful to Photosystem II because of its highly oxidizing nature. However, no direct evidence specificially implicating P680+ in photoinhibition has been obtained yet. To investigate whether P680+ is harmful to Photosystem II, turnover of the D1 protein and of the Photosystem II reaction center complex were measured in vivo in a mutant of the cyanobacterium Synechocystis sp. PCC 6803, in which the physiological donor to P680+, Tyrz, was genetically deleted. In this mutant, D1 degradation in the light is an order of magnitude faster than in wild type. The most straightforward explanation of this phenomenon is that accumulation of P680+ leads to an increased rate of turnover of the Photosystem II reaction center complex, which is compatible with the hypothesis of destructive oxidation by P680+ that is damaging to the Photosystem II complex.  相似文献   

17.
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of ∼ 7 ps and ∼ 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0 → AA0 charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A0.  相似文献   

18.
P. Jursinic 《BBA》1977,461(2):253-267
Parallel measurements of the rise in chlorophyll a fluorescence yield and delayed light emission decay, after a 10 ns saturating excitation flash, have been made in tris(hydroxymethyl)aminomethane-washed chloroplasts. Various electron donor systems (Mn2+; ascorbate; reduced phenylenediamine and benzidine) were used in conjuction with different preillumination regimes to alter [P+-680], the oxidized form of the Photosystem II reaction center chlorophyll a. Conditions giving rise to high [P+-680] resulted in only a small rise in fluorescence yield, an inhibition of a 6 μs delayed light component, and an enhancement of a 60 μs component of delayed light emission. These results confirm the hypothesis that P+-680 acts as a quencher of fluorescence and that delayed light emission in the microsecond time range is due to the back reaction of P+-680 and Q?. (Q is the first “stable” electron acceptor of Photosystem II.) Two preillumination flashes are required before the full effect of Tris washing is observed in the delayed light emission decay and fluorescence yield rise; this suggests that a capacity to hold two charges exists between the Tris block and P+-680. Tris washing has no direct effect on the movement of electrons from Z (the first electron donor to P+-680) to P+-680. Finally, Mn2+ donates electrons to P+-680 via Z.  相似文献   

19.
The origin of the extraordinary high redox potential of P680, the primary electron donor of Photosystem II, is still unknown. Photochemically induced dynamic nuclear polarisation (photo-CIDNP) 13C magic-angle spinning (MAS) NMR is a powerful method to study primary electron donors. In order to reveal the electronic structure of P680, we compare new photo-CIDNP MAS NMR data of Photosystem II to those of Photosystem I. The comparison reveals that the electronic structure of the P680 radical cation is a Chl a cofactor with strong matrix interaction, while the radical cation of P700, the primary electon donor of Photosystem I, appears to be a Chl a cofactor which is essentially undisturbed. Possible forms of cofactor–matrix interactions are discussed.  相似文献   

20.
Mark S. Crowder  Alan Bearden 《BBA》1983,722(1):23-35
The reduction rate of oxidized reaction center chlorophyll of Photosystem I after laser-flash excitation at 25 K has been determined for D-144 subchloroplast fragments and chloroplasts. A maximum of 40% of Photosystem I reaction centers undergo irreversible charge separation (P-700, Cluster A: P-700+, Cluster A?) at 25 K, a percentage which is independent of laser-flash intensity. The remaining reaction centers in chloroplasts and D-144 fragments undergo reversible charge separation with biphasic recombination. Similar amplitudes and time constants (chloroplasts, 49 μs (61%); D-144 fragments, 90 μs (67%)) were obtained for the fast component, while the slower component differed considerably in time (chloroplasts, 2.9 ms; D-144 fragments, 170 ms). It is known that Fe-S Cluster A is photoreduced in less than 1 ms at 25 K. Data obtained support a model for Photosystem I involving a single intermediate in the decay path between the reduced primary electron acceptor (A?1) and P-700+ and a second intermediate in the decay path between a reduced secondary electron acceptor and P-700+. Dual laser-flash experiments to determine rate constants for these processes are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号