首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A screening procedure was developed for identifying mutants of the plasmid pKM101 no longer capable of enhancing mutagenesis. The test was based on the large pKM101-mediated increase in the number of Gal+ papillae observed on colonies of Salmonella typhimurium gal mutants plated on tetrazolium-galactose plates in the presence of a mutagen. The pKM101 mutant plasmids transferred normally, were stably maintained in cells, caused normal levels of ampicillin resistance, and still imparted sensitivity to phage Ike to their hosts. However, the pKM101 mutants had lost the ability to (i) enhance the reversion of both point and frameshift mutations, (ii) protect the cells against killing by UV irradiation, (iii) increase the spontaneous reversion rates of point mutations, (iv) enhance plasmid-mediated reactivation of UV-irradiated phage P22, (v) enhance Weigle reactivation. One pKM101 mutant with different properties from the others was identified by its increased spontaneous mutator effect. It is suggested that pKM101 amplifies the activity of the inducible error-prone repair systems in bacteria and that this is the function of pKM101 in the Ames Salmonella tester strains used for detection of carcinogens as mutagens.  相似文献   

2.
A forward mutation assay in Salmonella typhimurium that selects for 5-fluoruracil (FU) resistance has been developed. The two genes possibly involved in FU resistance, the uracil phosphoribosyl transferase gene (upp) and the uracil transport protein (uraA), have been cloned from S. typhimurium and sequenced. One hundred percent of FU-resistant clones display sequence changes in the upp gene, indicating that its loss is the major mechanism involved in FU resistance. The spontaneous mutational spectra at the upp locus were then determined in two S. typhimurium strains, FU100 and FU1535, that differ only in the presence of pKM101 plasmid. The pKM101 plasmid provides error-prone replicative bypass of DNA lesions and renders FU100 more susceptible to induced mutagenesis. Fluctuation analysis of FU-resistant clones demonstrated a 10-fold higher spontaneous mutation rate at the upp locus in FU100 relative to FU1535. Over 300 independent FU-resistant clones were then used to generate the spectra at the upp locus in both the strains. Approximately 40% of all the mutations were base substitutions, present at the same relative percentage in both the strains. Frameshift mutations also accounted for approximately 40% of the total; however, their incidence was slightly elevated in FU100. The remaining mutations were larger insertions and deletions, which were both slightly elevated in FU1535. pKM101 significantly elevated the rate of all classes of mutations at the upp locus, with profound effects on A:T to T:A transversions and -2-base frameshift mutations. These initial mutational spectra at the upp locus reveal 147 mutable sites, or 23% of the total 627-base coding sequence and suggest that the target can detect a diverse spectrum of mutagenic events.  相似文献   

3.
Salmonella typhimurium LT2 strains bearing plasmids pKM101, R64 or pColIb-P9 demonstrated enhanced UV survival when compared with strains not bearing plasmids. A strain of S. typhimurium bearing both pKM101 and pColIb-P9 survived UV irradiation slightly better than either of the single-plasmid strains. Spontaneous reversion of the hisG46 and trpE8 missense alleles was enhanced in each single-plasmid strain, and for the dual-plasmid strain containing pKM101 and pColIb-P9 enhancement represented a near additivity of the response seen for the single-plasmid strains. Following exposure to UV or visible-light irradiation, reversion of hisG46 and trpE8 was also enhanced in each single-plasmid strain, but quantitatively greater in the dual-plasmid strain and was equal to or slightly greater than additive the responses of the single-plasmid strains. In contrast to visible-light irradiation, UV exposure resulted in two phenotypic Trp+-revertant classes. One Trp+ class, having normal colony size (2.0 mm) and similar in number to His+ revertants, was comprised of intragenic revertants of trpE8, while the predominant Trp+ class, having smaller colony size (0.8 mm), represented intergenic suppressor revertants, illuminating the differences in mutation and/or repair specificity for UV and visible-light exposure. Methyl methane-sulfonate (MMS)-induced reversion of hisG46 was similar in effect to that seen with UV or visible-light irradiation. Plasmids pKM101 or pColIb-P9 enhanced the frequency of hisG46 reversion, while a more than additive response was seen in a strain with both plasmids. Furthermore, MMS-induced reversion of hisG46 was also observed to be greatest in a strain bearing plasmid R64 (incompatibility group I alpha) and pKM101, when compared with single-plasmid strains bearing either R64 or pKM101.  相似文献   

4.
The mutagenic potential of 9-[(3-dimethylaminopropyl)amino]-acridine and its 1-, 2-, 3- and 4-nitro derivatives was studied in several strains of Salmonella typhimurium carrying the frameshift marker hisC3076. The strains all carried deep rough (rfa) mutations, and were either wild-type with respect to DNA repair capacity or carried recA, uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without plasmid pKM101 were also studied. The des-nitro compound resembled 9 aminoacridine and other simple intercalating compounds. Both toxicity and mutagenesis were apparently unaffected by the uvrB and recA mutations or by the presence of plasmid pKM101. However, mutagenicity was reduced by the polA1 mutation, and virtually eliminated by the polA3 mutation. The drug was substantially more toxic in the latter, slightly more toxic in the former, of these polA- strains. Plasmid pKM101 enhanced mutagenesis and protected from toxicity in both polA1- and polA3- strains, although it did not restore either of these parameters to the level in the wild-type strain. The 2-nitro compound was generally similar to the des-nitro compound, except that it was considerably more toxic and apparently non-mutagenic in the recA-bearing strain. By contrast, mutagenicity of the 3- and 4-nitro compounds was enhanced by the uvrB mutation and by the presence of the plasmid. These compounds were highly toxic but non-mutagenic in the recA- strain, and showed some increased toxicity in polA1- and polA3- strains. The 1-nitro compound has been previously found to cross-link DNA. Unlike well-characterised cross-linkers such as mitomycin C it was highly mutagenic in the uvrB- strain, and this mutagenesis was enhanced by plasmid pKM101, but eliminated by the recA mutation. At high doses, where the drug was completely toxic towards uvrB- or recA-carrying strains, it became mutagenic in the DNA-repair-proficient strains. This 'high-dose' mutagenesis was enhanced by plasmid pKM101, but reduced by the polA1 mutation and almost eliminated by the polA3 mutation. Although there are several possible interpretations of these data, they are compatible with the suggestion that the lesion induced by high doses (but not by low doses) of nitracrine is a cross-link, but that this is not the major mutagenic lesion.  相似文献   

5.
Oligonucleotide probes were used to identify base substitutions in 1089 revertants of hisG46 in Salmonella typhimurium that arose spontaneously or following irradiation with UV- or gamma-rays. The hisG46 allele, carrying a mutant CCC codon (Pro) in place of the wild-type codon CTC (Leu69) reverted via 6 distinguishable mutational events--C to T transitions at codon sites 1 or 2, C to A or C to G transversions at codon site 1, C to A at codon site 2, and an extragenic suppressor mutation. The distribution of hisG46 revertants differed among treatments and was influenced by the DNA-repair capacity of the bacteria. Plasmid pKM101 enhanced the frequencies of both spontaneous and induced mutations; transversion events were enhanced more efficiently by pKM101 than were transition events. Compared to Uvr+ bacteria, Uvr- bacteria had higher frequencies of spontaneous and induced mutations; transition mutations were enhanced more efficiently than were transversion mutations. The influence of DNA-repair activities on the mutational spectra provides some insights on the origins of spontaneous and UV-induced mutations.  相似文献   

6.
A study was made of the adaptive response to methylmethane sulfonate (MMS) in E. coli. (18 strains of B, WP2, and H/r30 groups, including three strains of bacteria with pKM101 plasmid). The adaptation of wild type cells and uvrA- and uvrB- mutants to non-lethal concentrations of MMS (10-30 mkg/ml during 90-120 min) leads to a significant increase in their resistance to lethal MMS concentrations (10-30 mM for 10-120 min): the dose modifying factor (DMF) being 1.5-1.8. In single recA or lexA mutants (or double recA uvr- and lexA uvr- mutants) the efficiency of adaptive response to MMS was significantly lower: the DMF being 1.1-1.2. In Bs-1 gamma R strain with intragenic suppressor of lexA gene the adaptive response efficiency was the same as in B/r (recA+lexA+) strain. There is no adaptive response to MMS in polA- strains. The adaptive response to MMS in E. coli is different from that to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-methylnitrosourea (MNM), because in these two cases it is absolutely lexA-recA dependent. It is supposed that a partial recA-lexA dependence of the adaptive response to MMS in E. coli may be due to a specific MMS-induced lethal damage that induces an adaptive repair non-related to the system of recA-lexA-independent adaptive responses to MNNG and MNM. The presence of a plasmid of drug resistance pKM101 exerts no influence on the value, efficiency and recA-lexA-dependence of the adaptive response of E. coli to MMS.  相似文献   

7.
Summary A tif-1 umuC36 double mutant of Escherichia coli was constructed. It has been found that the umuC36 mutation prevents both increased spontaneous mutagenesis and enhanced reactivation of UV-irradiated , phenomena normally observed in the tif-1 strain grown at 42°C. When the plasmid pKM101 was introduced into tif-1 umuC36, an elevated spontaneous reversion rate of the his-4 mutation observed at 30°C was further increased 6-fold at 42°C. This was accompanied by a 10-fold increase in the ability of tif-1umuC36 containing pKM101 and grown before infection at 42°C to reactivate UV-irradiated .  相似文献   

8.
2 strains of S. typhimurium, TA98 and TA100, and 2 strains of E. coli, WP2(pKM101) and WP2uvrA-(pKM101) were used to study mutagenesis by 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) in the dark and in the presence of near-ultraviolet (NUV) light both without metabolic activation and with rat-liver S9 at 3 levels (4, 10 and 30% in standard cofactors). The S9-independent base substitution mutagenic activity of 8-MOP plus NUV light was confirmed in WP2(pKM101), and a similar activity was seen for 4,5',8-TMP, although neither substance was active in TA100. The frameshift mutagenic activity of 8-MOP in the dark in TA98 was not confirmed despite histidine levels which would ensure DNA replication, but this may be due to the lower concentrations of 8-MOP achieved in the common solvent system adopted. Both 8-MOP and 4,5',8-TMP were mutagenic in WP2uvrA-(pKM101) after microsomal activation, and the responses were similar whether experiments were conducted in the dark or in NUV light. In view of the oral administration of 8-MOP to psoriasis patients, this finding may be of relevance in risk assessment, and tends to suggest that topical application of 4,5',8-TMP to psoriatic patients may present reduced risk of malignant disease.  相似文献   

9.
Plasmid pKM101 provides UV protection and increases the frequency of spontaneous and UV-induced mutations in Escherichia coli. By analyzing reversion patterns of defined trpA alleles, we showed that pKM101 altered the mutational specificity of UV-induced mutations. Certain UV-induced base-pair substitutions were strongly enhanced, while others were decreased in frequency in the presence of pKM101. This result suggests an interaction between cellular misrepair and an error-prone repair function(s) provided by pKM101. We have also examined UV mutational specificity in the absence of pKM101 and found the following: (1) UV preferentially enhances missense, as well as nonsense, intergenic suppressor mutations; (2) UV causes all possible base-pair substitutions as well as frameshift mutations; (3) G·C base pairs are more susceptible to UV mutagenesis than A·T base pairs at the same nucleotide positions; and (4) UV-induced mutations can occur at nucleotide positions that are not part of pyrimidine-pyrimidine sequences.  相似文献   

10.
Plasmid pKM101 enhances the frequency of spontaneous and ultraviolet light-induced mutations in Escherichia coli and protects the cells against the lethal effects of ultraviolet irradiation. By analyzing reversion patterns of defined trpA alleles, we showed that pKM101 caused all types of spontaneous base-pair substitution mutations with the possible exception of guanine . cytosine leads to adenine. thymine transitions. Neither insertion nor deletion frameshift mutations were enhanced. Transversions were more strongly enhanced than transitions, and adenine . thymine base pairs appeared more susceptible to pKM101 mutator activity than guanine . cytosine base pairs. In addition, there were effects from neighboring base pairs and genetic background that influenced the mutator activity of pKM101.  相似文献   

11.
Four isogenic strains of Escherichia coli with the same auxotrophic marker (arg Fam--namely wild-type, uvrA-, polA- and recA-) were used for testing the lethalities and mutagenicities of 1-naphthyl N-methyl-N-nitrosocarbamate (nitroso-NAC), 3-methylphenyl N-methyl-N-nitrosocarbamate (nitroso-MTMC), and 3,4-dimethylphenyl N-methyl-N-nitrosocarbamate (nitroso-MPMC). The strains recA- and polA- showed a similarly higher sensitivity to killing than wild-type and uvrA- after treatments with each of the three chemicals, whereas the strains wild-type, uvrA-, and polA- were equally mutable by these compounds at equal doses. The strain recA- was hardly mutable by nitroso-NAC, but significant levels of Arg+ mutations were observed after treatments with nitroso-MTMC and nitroso-MPMC. These and previous results suggest that both nitroso-MTMC and nitroso-MPMC are similar in their mutagenicity pattern to N-methyl-N'-nitro-N-nitrosoguanidine whereas nitroso-NAC is similar to methyl methanesulfonate or X-rays, and that the major damage to DNA of the three agents is not excisable by the uvrA+-dependent excision repair, probably methylation in DNA.  相似文献   

12.
Dose-response curves were compared for deletions [ColBR (resistant to colicin B) mutations being more than 80% deletions] and base changes (reversion of argFam to prototrophy argplus) induced in the same set of E. coli strains (wild-type for DNA repair, uvrA-, polA- and recA-) by N-methyl-N'-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS), hydroxylamine (HA), 4-nitroquinoline I-oxide (4NQO), mitomycin C (MTC, UV and X-rays. All these agents induced deletions as well as base changes in the wild-type strain. Thus chemical mutagenesis differed in E. coli and bacteriophages in vitro, for HA, NTG, EMS and perhaps UV produced only point mutations in phage Tr. The patterns of deletion and base-change mutability in E. coli were surprisingly similar. (I) The recombination less recA- strain was mutable by only three (NTG, EMS, HA) of the seven mutagens for either deletions or base changes. (2) The uvrA- strain, unable to excise pyrimidine dimers, was very highly mutable by 4NQO and UV but immutable by MTC for both deletions and base changes. (3) The polA- strain, defective in DNA polymerase I due to a non-suppressible mutation, was very highly mutable by HA and highly mutable by MTC and 4NQO for both deletions and base changes but was highly mutable only for deletions by UV and X-rays, remaining normally mutable by the other agents for both deletions and base changes despite its high sensitivity to their inactivating action. We conclude that errors in the recA-dependent repair of induced DNA damage (after 4NQO, MTC, UV and X-rays) or errors in replication enhanced by damage to the replication system or to the template strands (after NTG, EMS, and HA) give rise to deletions as well as to base changes. From a comparative analysis of 14 dose-response curves for deletions and base changes, we conclude that the order of mutagenic efficiency relative to killing is (EMS, NTG) greater than (UV, 4NQO) greater than HA greater than (X-rays, MTC), and that X-rays, 4NQO, HA and MTC induce more ColBR deletions than Argplus base changes, whereas UV and EMS induce ColBR deletions and Argplus base changes at nearly equal rates and the specificity of NTG is intermediate between these two types.  相似文献   

13.
Salmonella typhimurium strains with supX mutations are more sensitive than wild type to killing by ultraviolet (UV) irradiation. Studies with strains bearing the leuD21 mutation revealed that inactivation of the supX locus by a nonsense mutation or a deletion results in a complete lack of ability to produce induced Leu+ reversion mutations after UV irradiation. Suppression of the nonsense supX mutation or the presence of an Escherichia coli K-12 F'-borne supX+ allele restored the capacity for induced reversions and increased cell survival after UV irradiation. Introduction of plasmid pKM101 into supX mutant strains also restored their capacity for UV mutagenesis as well as increased survival. The possible nature of the supX gene product and mechanisms by which it may affect expression of the inducible SOS error-prone repair system are considered.  相似文献   

14.
This paper reviews the influence of DNA repair on spontaneous and mutagen-induced mutation spectra at the base-substitution (hisG46) and -1 frameshift (hisD3052) alleles present in strains of the Salmonella (Ames) mutagenicity assay. At the frameshift allele (mostly a CGCGCGCG target), ΔuvrB influences the frequency of spontaneous hotspot mutations (−CG), duplications, and deletions, and it also shifts the sites of deletions and duplications. Cells with pKM101+ΔuvrB spontaneously produce complex frameshifts (frameshifts with an adjacent base substitution). The spontaneous frequency of 1-base insertions or concerted (templated) mutations is unaffected by DNA repair, and neither mutation is inducible by mutagens. Glu-P-1, 1-nitropyrene (1NP), and 2-acetylaminofluorene (2AAF) induce only hotspot mutations and are unaffected by pKM101, whereas benzo(a)pyrene and 4-aminobiphenyl induce only hotspot in pKM101, and hotspot plus complex in pKM101+. At the base-substitution allele (mostly a CC/GG target), the ΔuvrB allele increases spontaneous transitions in the absence of pKM101 and increases transversions in its presence. The frequency of suppressor mutations is decreased 4× by ΔuvrB, but increased 7.5× by pKM101. Both repair factors cause a shift in the proportion of mutations to the second position of the CC/GG target. With UV light and γ-rays, the ΔuvrB allele increases the proportion of transitions relative to transversions. pKM101 is required for mutagenesis by Glu-P-1 and 4-AB, and the types and positions of the substitutions are not altered by the addition of the ΔuvrB allele. Changes in DNA repair appear to cause more changes in spontaneous than in mutagen-induced mutation spectra at both alleles. There is a high correlation (r2=0.8) between a mutagen's ability to induce complex frameshifts and its relative base-substitution/frameshift mutagenic potency. A mutagen induces the same primary class of base substitution in TA100 (ΔuvrB, pKM101) as it does in Escherichia coli, mammalian cells, or rodents as well as in the p53 gene of human tumors associated with exposure to that mutagen. Thus, a mutagen induces the same primary class of base substitution in most organisms, reflecting the conserved nature of DNA replication and repair processes.  相似文献   

15.
We previously reported the development of mutation-specific Escherichia coli B tester strains WP3101 to WP3106 from strain WP2uvrA. In this study we constructed their pKM101-containing derivatives WP3101P to WP3106P, and further isolated their rfa derivatives WP4101-WP4106 and WP4101P-WP4106P. The six kinds of F' plasmids (lacI-, lacZ-, proAB+), each of which carries a different lacZ allele, contained in the above strains were originally derived from E. coli K-12 strains CC101-CC106. All the tester strains show Lac- and Trp- phenotype. Assays for transitions and transversions are based upon Lac+ reversion of a specific mutation located within the lacZ gene on an F' plasmid. The trpE65(ochre) allele in the same strains enables them to be used for Trp+ reversion assays as well. In the present paper, we evaluated the sensitivity, specificity, and usefulness of the newly developed tester strains. Strains WP3101P-WP3106P were highly sensitive to determine mutational profile of heterocyclic amines with S9 mix-mediated metabolic activation and most of the oxidative mutagens and free radical generators tested. Every type of base-pair substitutions induced by 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) or 5-diazouracil were detected in strains WP3101P-WP3106P, while A:T-->C:G and G:C-->A:T mutations induced by MeIQ, and A:T-->C:G, G:C-->A:T, and G:C-->C:G by 5-diazouracil were not detected in pKM101-free tester strains. In pKM101-carrying strains, cumene hydroperoxide induced all types of base substitutions, while formaldehyde preferentially induced G:C-->T:A transversions. Phenazine methosulfate induced predominantly G:C-->A:T transitions and G:C-->T:A transversions, while H2O2 induced predominantly G:C-->T:A and A:T-->T:A transversions. Introduction of the rfa mutation considerably enhanced sensitivity to bulky mutagens such as polycyclic aromatic compounds. All six possible base substitutions induced by 9, 10-dimethyl-1,2-benzanthracene (DMBA) were detected in tester strains WP4101P-WP4106P. In conclusion, our tester strains WP3101P-WP3106P and WP4101P-WP4106P permitted rapid and simple detection of specific mutations induced by variety of mutagens.  相似文献   

16.
A novel forward mutation assay has been developed in Salmonella typhimurium based on resistance to 5-fluorouracil (FU). The mutational target in the FU assay was determined to be the uracil phosphoribosyl transferase (upp) gene. To validate the upp gene as a suitable target for monitoring a variety of induced mutations, the mutational specificity was determined for five mechanistically different mutagens. The mutagens included a polycyclic hydrocarbon (benzo[a]pyrene, B[a]P), SN1 and SN2 alkylating agents (N-nitroso-N-methylurea, MNU, and methyl methanesulfonate, MMS, respectively), a frameshift mutagen (ICR-191), and an oxidative-damaging agent (hydrogen peroxide, H2O2). Induced mutation frequencies were measured in the presence and absence of the plasmid pKM101 (strain FU100 and FU1535, respectively). pKM101 renders FU100 more susceptible to induced mutation by providing error-prone replicative bypass of DNA adducts. B[a]P, MMS, and H2O2 failed to induce the mutant frequency in FU1535, demonstrating the dependence of pKM101 on induced mutations with these agents. ICR-191 and MNU were not dependent on pKM101, and did significantly induce mutations in FU1535. In contrast to FU1535, all agents significantly induced mutations in FU100. Approximately 60 independent mutants were sequenced for each agent that significantly induced the mutant frequency above background. The resulting mutational spectra illustrated predictable molecular fingerprints based on known mutagenic mechanisms for each agent. The predominant mutations observed were G:C to T:A transversions for B[a]P, A:T to T:A and G:C to T:A transversions for MMS, G:C to T:A transversions and A:T frameshifts for H2O2, G:C frameshifts for ICR-191, and G:C to A:T transitions for MNU. It can be concluded that the upp gene in the FU assay is a sensitive and suitable target to monitor a variety of induced mutations in Salmonella.  相似文献   

17.
We have examined the mutational specificity of 1-nitroso-8-nitropyrene (1,8-NONP), an activated metabolite of the carcinogen 1,8-dinitropyrene, in the lacI gene of Escherichia coli strains which differ with respect to nucleotide excision repair (+/- delta uvrB) and MucA/B-mediated error-prone translesion synthesis (+/- pKM101). Several different classes of mutation were recovered, of which frameshifts, base substitutions, and deletions were clearly induced by 1,8-NONP treatment. The high proportion of point mutations (> 92%) which occurred at G.C sites correlates with the percentage of 1,8-NONP-DNA adducts which occur at the C(8) position of guanine. The most prominent frameshift mutations were -(G.C) events, which were induced by 1,8-NONP treatment in all strains, occurred preferentially in runs of guanine residues, and whose frequency increased markedly with the length of the reiterated sequence. Of the base substitution mutations G.C-->T.A transversions were induced to the greatest extent by 1,8-NONP. The distribution of the G.C-->T.A transversions was not influenced by the nature of flanking bases, nor was there a strand preference for these events. The presence of plasmid pKM101 specifically increased the frequency of G.C-->T.A transversions by a factor of 30-60. In contrast, the -(G.C) frameshift mutation frequency was increased only 2-4-fold in strains harboring pKM101 as compared to strains lacking this plasmid. There was, however, a marked influence of pKM101 on the strand specificity of frameshift mutation; a preference was observed for -G events on the transcribed strand. The ability of the bacteria to carry out nucleotide excision repair had a strong effect on the frequency of all classes of mutation but did not significantly influence either the overall distribution of mutational classes or the strand specificity of G.C-->T.A transversions and -(G.C) frameshifts. Deletion mutations were induced in the delta uvr, pKM101 strain. The endpoints of the majority of the deletion mutations were G.C rich and contained regions of considerable homology. The specificity of 1,8-NONP-induced mutation suggests that DNA containing 1,8-NONP adducts can be processed through different mutational pathways depending on the DNA sequence context of the adduct and the DNA repair background of the cell.  相似文献   

18.
We have examined survival and mutagenesis of bacteriophage T7 after exposure to the alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). It was found that although both alkylating agents caused increased reversion of specific T7 mutations, EMS caused a higher frequency of reversion than did MMS. Exposure of the host cells to ultraviolet light so as to induce the SOS system resulted in increased survival (Weigle reactivation) of T7 phage damaged with either EMS or MMS. However, after SOS induction of the host we did not detect an accompanying increase in mutation frequency measured as either reversion of specific T7 mutants or by generation of mutations in the T7 gene that codes for phage ligase. Neither mutation frequency nor survival of alkylated phage was affected by the umuD,C mutation in the Escherichia coli host nor by the presence of plasmid pKM101. This may mean that the mode of Weigle reactivation that is detected in T7 is not mutagenic in nature.  相似文献   

19.
Plasmid pKM101, which carries muc genes that are analogous in function to chromosomal umu genes, protected Escherichia coli strains AB1157 uvrB+ umuC+, JC3890 uvrB umuC+, TK702 uvrB+ umuC and TK501 uvrB umuC against ultraviolet irradiation (UV). Plasmid pGW16, a derivative of pKM101 selected for its increased spontaneous mutator effect, also gave some protection to the UmuC-deficient strains, TK702 and TK501. However, it sensitised the wild-type strain AB1157 to low, but protected against high doses of UV, whilst sensitising strain JC3890 to all UV doses tested. Even though its UV-protecting effects varied, pGW16 was shown to increase both spontaneous and UV-induced mutation in all strains. Another derivative of pKM101, plasmid pGW12, was shown to have lost all spontaneous and UV-induced mutator effects and did not affect post-UV survival. Plasmids pKM101 and pGW16 increased post-UV DNA synthesis in strains AB1157 and TK702, whereas pGW12 had no effect. Similarly, the wild-type UV-protecting plasmids R46, R446b and R124 increased post-UV DNA synthesis in strain TK501, but the non-UV-protecting plasmids R1, RP4 and R6K had no effect. These results accord with the model for error-prone DNA repair that requires umu or muc gene products for chain elongation after base insertion opposite non-coding lesions. They also suggest that the UV-sensitizing effects of pGW16 on umu+ strains can be explained in terms of overactive DNA repair resulting in lethal, rather than repaired UV-induced lesions.  相似文献   

20.
A mutant of Escherichia coli K-12, IB10 carrying the ts10 mutation has been isolated. The mutation affects replication and inheritance of pKM101 plasmid. Incubation of the mutant under non-selective conditions of 42 degrees C resulted in the formation of R-cell population. The frequency of temperature-independent clones was 2,1 X 10(-5). The defect of pKM101 replication was shown to result in growth inhibition of host cells at a non-permissive temperature. The host growth only started after elimination of the plasmid. The mechanisms are likely to exist governing the participation of plasmid gene products in processes related to host growth. The influence of ts10 mutation on replication of other plasmids was studied. It was established that ts10 did not affect replication of R6K, RP4 and Flac+ plasmids. However, replication of R15, R205 as well as of pKM101 plasmid stopped under conditions of non-permissive temperature in IB10 mutant. Obviously, ts10 mutation results in defective replication of plasmids only belonging to the N-incompatibility group (IncPN). It is shown that R6K, RP4, Flac+ plasmids are not able to correct pKM101 replication in the mutant at 42 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号