首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Previous work showed that amiloride partially inhibits the net gain of Na in cold-stored red cells of guinea pig and that the proportion of unidirectional Na influx sensitive to amiloride increases dramatically with cooling. This study shows that at 37°C amiloride-sensitive (AS) Na influx in guinea pig red blood cells is activated by cytoplasmic H+, hypertonic incubation, phorbol ester in the presence of extracellular Cat2+ and is correlated with cation-dependent H+ loss from acidified cells. Cytoplasmic acidification increases AS Na efflux into Na-free medium. These properties are consistent with the presence of a Na-H exchanger with a H+ regulatory site. Elevation of cytoplasmic free Mg2– above 3 mm greatly increases AS Na influx: this correlates with a Na-dependent loss of Mg2–, indicating the presence of a Na-Mg exchanger.At 20°C activators of Na-H exchange have little or no further stimulatory effect on the already elevated AS Na influx. AS Na influx is much larger than either Na-dependent H+ loss or AS Na efflux at 20°C. The affinity of the AS Na influx for cytoplasmic H+ is greater at 20°C than at 37°C. Depletion of cytoplasmic Mg2+ does not abolish the high AS Na influx at 20°C.Thus, elevation of AS Na influx with cooling appears to be due to increased activity of a Na-H exchanger (operating in a slippage mode) caused by greater sensitivity to H+ at a regulatory site.  相似文献   

2.
The transport of L-proline, L-lysine and L-glutamate in rat red blood cells has been studied. L-proline and L-lysine uptake were Na+-independent. When the concentration dependence was studied both showed a non-saturable uptake assimilable to a difussion-like process, with high Kd values (0.718 and 0.191 min–1 for L-proline and L-lysine respectively). Rat red blood cells showed high impermeability to L-glutamate. No sodium dependence was observed and the Kd value was low (0.067 min–1). Our results show firstly, that rat red blood cells do not have amino acid transport systems for anionic and cationic amino acids and secondly that erythrocytes show no sodium-dependent L-proline transport, and that these cells are very permeable to this amino acid.Abbreviations MeAIB methyl aminoisobutyric acid  相似文献   

3.
Both glycine and leucine transport in rat red blood cells have been studied. The glycine uptake showed two different components, one sodium-dependent and another diffusion-like process. In contrast, leucine uptake was sodium independent. Both, Na+-dependent glycine and the overall leucine uptake in red blood cells showed a saturable pattern. Kinetic parameters in reticulocytes were: i) glycine: apparent Km 0.16 mM; Vmax 100.2 nmol/ml ICW/min; ii) leucine: apparent Km 2.11 mM; Vmax 3.88 mol/ml ICW/min. The erythrocytes kinetic parameters were: i) glycine: apparent Km 0.17 mM; Vmax 9.47 nmol/ml ICW/min; leucine; apparent Km 4.77 mM; Vmax 7.42 mol/ml ICW/min. The Kd values (sodium independent glycine uptake) were similar in both kind of cells, but the importance of this component in total glycine uptake in erythrocytes was much higher than in reticulocytes. Our results confirm that rat red blood cells have both saturable leucine and Na+-dependent glycine uptake, but some important changes occur during cell maturation.  相似文献   

4.
Alanine and glutamine transport have been studied during red blood cell maturation in the rat. Kinetic parameters of Na+-dependent L-alanine transport were:K m 0.43 and 1.88 mM andV max 158 and 45 nmoles/ml ICW/min for reticulocytes and erythrocytes, respectively. During red cell maturation in the rat there is a loss of capacity and affinity of the system ASC for L-alanine transport. The values for Na+-dependent L-glutamine transport in reticulocytes wereK m 0.51 mM andV max 157 nmoles/ml ICW/min. On the other hand, a total loss of L-glutamine transport mediated by both N and ASC systems is demonstrated in mature red cells. This seems to indicate that during rat red cell maturation the system N disappears. Furthermore, the system ASC specificity in mature cells changes, and glutamine enters the red cell by non-mediated diffusion processes.  相似文献   

5.
Summary Red blood cells of certain species of animals, such as dogs and cats, contain low potassium and high sodium, whereas the erythropoietic stem cells giving rise to these cells are of high potassium type. This paper examines the sequence of membrane transport changes during erythropoiesis by analyzing the K, Na and Fe in single bone marrow cells, reticulocytes and mature red blood cells with X-ray microanalysis. The relationship between K/Na ratios and Fe/(K+Na) ratios were examined by X-ray microanalysis. The K/Na ratios give a measure of the membrane cation transport function. The Fe/(K+Na), which is analogous to hemoglobin concentration, gives an index of maturation stage. The relationships between K/Na and Fe/(K+Na) in the marrow cells of normal adult dog and those of a phenylhydrazine-injected dog with accelerated erythropoiesis show that the modification of cation composition occurs after the initiation of hemoglobin synthesis but before its completion. Similar relationships in the reticulocytes obtained from phenylhydrazine-injected dogs as well as from newborn dogs show a consistent decrease in K/Na with increased Hb, indicating a drastic change in cation composition during the maturation of the reticulocytes. Therefore the modification in membrane transport function must have occurred before or during the formation of reticulocytes.  相似文献   

6.
The cell membrane permeability governs the rate of solute transport into and out of the cell, significantly affecting the cell's metabolic processes, viability, and potential usefulness in both biotechnological applications and physiological systems. Most previous studies of the cell membrane permeability have neglected the possible effects of suspending medium on membrane transport, even though there is extensive experimental evidence that suspending phase composition can significantly affect other properties related to the cell membrane (e.g., cell deformability, fragility, and aggregation rate). This study examined the effects of suspending phase composition (both proteins and electrolytes) on the permeability of human red blood cells to the metabolites creatinine and uric acid. Data were obtained using a stirred ultrafiltration device with direct cell- and proteinfree sampling through a semipermeable membrane. Both the uric acid and creatinine permeabilities were strongly affected by the suspending phase composition, with the permeabilities in different buffer solutions varying by as much as a factor of three. The predominant factors affecting the permeability were the presence (or absence) of chloride, phosphate/adenine, and proteins, although the magnitude and even the direction of these effects were significantly different for creatinine and uric acid transport. The dramatic differences in behavior for uric acid and creatinine reflect the different transport mechanisms for these solutes, with uric acid transported by a carrier-mediated mechanism and creatinine transported by passive diffusion through the lipid bilayer. These results provide important insights into the effects of solution environment on cell membrane transport and other cell membrane-mediated properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
Methoxypolyethylene glycol (mPEG) covalently bound to the surface of human red blood cells (hRBCs) has been shown to decrease immunological recognition of hRBC surface antigens (Bradley et al., 2002). However, there is an increasing shortage of hRBC donations, thus making hRBCs scarce and expensive (Davey, 2004; Riess, 2001). The goal of this study is to similarly PEGylate the surface of bovine RBCs (bRBCs) with the aim of reducing the demand on human blood donations needed for blood transfusions. This study investigates the feasibility of modifying the surface of bRBCs with the succinimidyl ester of methoxypolyethylene glycol propionic acid (SPA-mPEG) for use as a potential blood substitute. The oxygen binding affinity of PEGylated bRBCs was moderately increased with increasing initial SPA-mPEG concentrations up to 4 mM when reacted with bRBCs at a hematocrit of 12%. Oxygen transport simulations verified that SPA-mPEG conjugated bRBCs could still transport oxygen to pancreatic islet tissues even under extreme conditions. PEGylated bRBCs reconstituted to a hematocrit of 40% exhibited viscosities on the order of approximately 3 cp, similar to hRBCs at the same hematocrit. Taken together, the results of this study demonstrate the success of PEGylating bRBCs to yield modified cells with oxygen binding, transport and flow properties similar to that of hRBCs.  相似文献   

8.
Many steroid and thyroid hormones and some drugs are bound by circulating red cells. Red cell-bound ligand may not be physiologically inert, as recent studies show that red cell-bound drug is available for uptake by brain. To investigate whether triiodothyronine (T3) is available for uptake by brain in vivo from the circulating red cell pool, the present investigations measure the effects of human erythrocytes on rat brain uptake of [125I]T3 in vivo. The fraction of circulating T3 available for uptake in vivo in the presence of 0, 2, 5, 10, 22, or 44% red cells was essentially identical to the fraction of [125I]T3 unbound in vitro. Therefore, [125I]T3 bound to red cells obtained from normal volunteers is not available for uptake by brain in vivo.  相似文献   

9.
Arsenic (As) is an air and water toxicant that causes cancer in multiple organs. Humans are exposed to As through contaminated water. We have examined the cytotoxicity of sodium meta-arsenite (SA), an As(III) compound, in human red blood cells (RBC) under in vitro conditions. Haemolysates were prepared from human RBC treated with different concentrations of SA (0.1–5.0?mM) for 5?h at 37?°C. SA treatment of RBC caused significant increase in methaemoglobin formation, protein and lipid oxidation, and nitric oxide levels. It also resulted in decrease in glutathione levels, methaemoglobin reductase activity and plasma membrane redox system. SA exposure also inhibited the pathways of glucose metabolism while increasing AMP deaminase and glyoxalase-I. It impaired the enzymatic and non-enzymatic antioxidant defence systems which resulted in decreased antioxidant power and a compromised ability to quench free radicals. SA exposure also damaged the membrane since it decreased the activity of membrane bound enzymes, increased the osmotic fragility of treated cells and induced gross morphological changes. This cytotoxicity was the result of oxidative damage since the production of reactive oxygen species (ROS) was increased in SA treated erythrocytes. Thus As(III) causes extensive damage to RBC which impairs their antioxidant system and alters the major cellular metabolic pathways. All this has the potential to lower the oxygen carrying capacity of RBC and reduce their lifespan in blood.  相似文献   

10.
Summary The plant alkaloid, sanguinarine, inhibits the ouabain-sensitive K–Na pump and increases the downhill, ouabain-insensitive movements of K and Na in human red cells. These two effects have different temporal and concentration dependencies and are mediated by two different chemical forms of sanguinarine. The oxidized, charged form (5×10–5 m) promptly inhibits the pump but does not affect leakage of K and Na. The reduced, uncharged form of sanguinarine causes lysis of red cells but does not inhibited the pump. Sanguinarine also increases the conductance of bilayers formed from sheep red cell lipids. The effect is produced by the uncharged but not by the charged form of sanguinarine. Bilayer conductance increases as the fourth power of sanguinarine concentration when the compound is present on both sides of the membrane and as the second power of concentration when present on only one side. Conductance also increasee-fold for each 34 mV increase in the potential difference imposed across the membrane. The results suggest that the uncharged forms of sanguinarine produce voltage-dependent channels in bilayers.  相似文献   

11.
12.
Summary The molecular mechanism of anion exchange across the human red blood cell membrane was assessed with the fluorescent substrate analog NBD-taurine and the method of continuous monitoring of transport by fluorescence. The efflux of NBD-taurine was studied under a variety of experimental conditions such as temperature, pH and anion composition of cells and media. The temperature profile of NBD-taurine transfer from Cl-loaded cells into Cl media resembled that of Cl self-exchange, whereas that of NBD-taurine transfer from sulfate-loaded cells into sulfate media resembled that of sulfate self-exchange. Although the pH profiles of NBD-taurine transfer from Cl-loaded cells into Cl media and that of Cl self-exchange resembled each other, the analogous transfer with sulfate replacing Cl was markedly different. These and other data were analyzed and found to be consistent with a model which comprises the following: (a) a H+-titratable group in the carrier mechanism; (b) alteration of transport sites between the two sides of the membrane (i.e., ping-pong kinetics); and (c) transmembrane distribution of transport sites which is modulated by pH. It is shown that NBD-taurine transfer represents a tracer flux of a fluorescent substrate which gives a measure for the presence of monovalent transport sites at the inner surface of the membrane. The latter is markedly affected by the relative concentrations of anions and H+ on both sides of the red blood cell membrane.  相似文献   

13.
In the presence of the Na+-channel blocker amiloride, the short-circuit current across the skins of bullfrog tadpoles in metamorphic stages XIX–XXIV was subjected to fluctuation analysis. The resulting power spectra contained a Lorentzian component of which the plateau value (S0) decreased while the corner frequency (fc) increased as the mucosal amiloride concentration was increased from 0.5 to 24 μM. From the linear relationship between the fc values and the amiloride concentrations it was possible to determine the binding (k′01) and unbinding (k10) constants for amiloride to its receptor on the Na+ channel. With these parameters as well as short-circuit current and S0 values, the current through the individual Na+ channels (i) was calculated (average 0.58 pA). It did not increase significantly during late metamorphosis. The density of Na+ channels (M) in the apical membrane, on the other hand, increased significantly. It would appear that the increase in short-circuit current which occurs at this time is due primarily to an increase in amiloride-blockable Na+ channels. Unexpectedly, a Lorentzian component could be fitted to power spectra in amiloride-treated skins (stages XIX–XXI) which showed no amiloride-sensitive short-circuit current. Moreover, the typical increase in fc with the amiloride concentration did not occur in these animals.  相似文献   

14.
The response of human red blood cells to the cryoprotective agents, DMSO and glycerol, has been investigated using a pulsed NMR method. The experimentally determined parameters are: (1) the intracellular transverse relaxation time, T2a; (2) the mean residence time of intracellular water, τa, which is effectively a reciprocal measure of the rate of water transport across the red blood cell membrane; and (3) the activation energy for this process. The quantitative data indicate that the observed effects are colligative rather than species-specific in origin.  相似文献   

15.
天花粉蛋白对红细胞损伤作用的AFM研究   总被引:3,自引:0,他引:3  
目的:利用原子力显微镜(atomic force microscopy,简称AFM)观察红细胞(red blood cells,简称RBC)与天花粉蛋白(trichosanthin,简称TCS)作用后形态上的变化以及细胞膜的损伤情况。方法:将1.2mg/ml的TCS溶液与红细胞的PBS缓冲溶液(pH7.4)按1:4的比例混合,在35℃温度下作用2h后,用原子力显微镜观察受损的红细胞,与正常红细胞进行对比。结果:(1)与正常红细胞相比,与TCS作用后的红细胞的高度明显降低,凹陷部分更加明显。(2)对红细胞上小范围扫描成像的结果显示,受损后的红细胞膜表面结构发生了变化,膜表面颗粒排列的特征依然存在,但颗粒之间开始产生连接。结论:TCS能损伤红细胞膜,改变细胞膜的微结构,引起红细胞的溶血作用。  相似文献   

16.
17.
18.
Due to potential problems that can occur during blood transfusion and increasing blood shortages, our group engineered methoxypolyethylene glycol conjugated bovine red blood cells (mPEG-bRBCs) as a potential universal oxygen therapeutic. This current work investigates the immunological properties of mPEG-bRBCs incubated with human plasma (hP) and correlates these properties to exposed Galalpha(1,3)Gal xenoantigens. After mPEG-bRBCs were incubated with hP, the amount of bound IgG and IgM was assessed via flow cytometry. Flow cytometry also assessed the amount of GS-IB4 bound to exposed Galalpha(1,3)Gal xenoantigens. The results of this study demonstrate that most hP samples strongly promote agglutination of mPEG-bRBCs regardless of the extent of mPEG surface coverage or donor blood type. IgG and IgM from hP bound strongly to mPEG-bRBCs. In general, the Galalpha(1,3)Gal xenoantigen remains exposed at all levels of PEG surface coverage. PEGylation did block some of the xenoantigens as the amount of exposed Galalpha (1,3)Gal decreased with increased mPEG surface coverage. However, this was not sufficient to prevent a strong agglutination reaction. Taken together, the results of this study indicate that the current strategy for PEGylating bRBCs is unsatisfactory for the development of immunologically silent oxygen therapeutics.  相似文献   

19.
Summary Red cell volume regulation is important in sickle cell anemia because the rate and extent of HbS polymerization are strongly dependent on initial hemoglobin concentration. We have demonstrated that volume-sensitive K:Cl cotransport is highly active in SS whole blood and is capable of increasing MCHC. We now report that Na+/H+ exchange (Na/H EXC), which is capable of decreasing the MCHC of erythrocytes with pHi<7.2, is also very active in the blood of patients homozygous for HbS. The activity of Na/H EXC (maximum rate) was determined by measuring net Na+ influx (mmol/liter cell·hr=FU) driven by an outward H+ gradient in oxygenated, acidloaded (pHi 6.0), DIDS-treated SS cells. The Na/H EXC activity was 33±3 FU (mean±se) (n=19) in AA whites, 37±8 FU (n=8) in AA blacks, and 85±15 FU (n=14) in SS patients (P<0.005). Separation of SS cells into four density-defined fractions by density gradient revealed mean values of Na/H EXC four to five times higher in reticulocytes (SS1), discocytes (SS2) and dense discocytes (SS3), than in the fraction containing irreversibly sickled cells and dense discocytes (SS4). In contrast to K:Cl cotransport, which dramatically decreases after reticulocyte maturation, Na/H EXC persists well after reticulocyte maturation. In density-defined, normal AA red cells, Na/H EXC decreased monotonically as cell density increased. In SS and AA red cells, the magnitude of stimulation of Na/H EXC by cell shrinkage varied from individual to individual. We conclude that Na/H EXC is highly expressed in SS and AA young red cells and decays slowly after reticulocyte maturation.  相似文献   

20.
Our in vivo studies on a rat model established safety of transfusing liposome-treated red blood cells (RBCs) but identified the potential for immune modulation as related to transfusion efficacy of liposome-treated RBCs. The aim of this study was at assessing the impact of liposome-induced membrane changes on the immune profile of liposome-treated RBCs by (a) evaluating their interaction with endothelial cells and monocytes; and (b) the resulting immune response derived from this interaction, in the form of cytokine release, adhesion molecules expression and phagocytosis. Unilamellar liposomes were synthesized to contain unsaturated phospholipids (1,2-dioleoyl-sn-glycero-3-phosphocholine [DOPC]:CHOL, 7:3?mol%). The human RBCs immune profile was assessed by incubating control and DOPC-treated RBCs with human umbilical vein endothelial cells (HUVECs) and monocytes. Cytokine release measured by Luminex technology, vascular cell adhesion molecule (VCAM)-1 and E-selectin on HUVECs measured by flow cytometry, and the erythrophagocytic activity of monocytes by monocyte monolayer assay (MMA) were determined. Fibroblast growth factor [FGF]-2 was the only cytokine released by HUVECs that remained increased after incubation with DOPC-treated RBCs compared to control throughout storage. The expression of both VCAM-1 (15.3?±?5.6% versus 6.3?±?0.9%, p?=?0.008) and E-selectin (18.0?±?6.3% versus 6.6?±?0.7%, p?=?0.004) by HUVECs were significantly increased after incubation with DOPC-treated RBCs at day 2 of storage. The MMA resulted in phagocytic indexes of zero for both control and DOPC-treated RBCs at day 2 and 42 of storage. The liposome treatment did not result in significant changes to the immune profile of stored DOPC-treated RBCs. These findings combined with previous in vivo results, make liposome treatment a potential candidate for application in RBC preservation and open the possibility for clinical use with other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号