首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression and activity of cellular glutathione peroxidase (GPx1) are regulated by selenium (Se). Generally speaking, organic forms of Se have less toxicity and greater bioavailability compared with inorganic forms. In this study, the effects of different forms and concentrations of Se on the regulation of mRNA level and activity of GPx1 in bovine hepatocytes were evaluated, and the optimal doses of different forms of Se that supported the full expression of GPx1 were determined. Primary cultured bovine hepatocyte monolayers derived from neonatal male Holstein calves (aged 1–2 days) were incubated for 24 h with 0 (control), 0.5, 1, 1.5, 2, 3, 4 or 5 μmol/L of Se from dl-selenomethionine (Se-Met), sodium selenite (Na2SeO3) or Kappa-selenocarrageenan (Se-Car). Compared with controls, a significantly lower level of release of lactic dehydrogenase (LDH) was observed at 0.5–5 μmol/L of Se-Met, 0.5–1 μmol/L of Na2SeO3 and 0.5 μmol/L of Se-Car, but significantly higher LDH release was observed at 2–5 μmol/L of Na2SeO3 and 3–5 μmol/L of Se-Car, and the response occurred in a dose-dependent manner. The intracellular content of reduced glutathione in all hepatocytes treated with Se was significantly lower than that of controls. Significant increases in GPx1 mRNA were obtained in all hepatocytes treated with Se, with maximal effects at 3 μmol/L of Se-Met, 1.5 μmol/L of Na2SeO3 and 2 μmol/L of Se-Car, respectively. Furthermore, 3 μmol/L of Se from Se-Met resulted in peak levels of GPx1 mRNA. After reaching a maximal level, higher Se supplementation led to a reduction of GPx1 mRNA. The activity of GPx1 showed similar patterns but of lower magnitude. We conclude that (a) the regulation of mRNA level and activity of GPx1 in primary cultured bovine hepatocytes by different forms of Se varies and (b) the optimal doses of Se to support the full expression of GPx1 in bovine hepatocytes when supplied as Se-Met, Na2SeO3 and Se-Car are 3, 1.5 and 2 μmol/L, respectively.  相似文献   

2.
Livestock are frequently provided nutrient-depleted diets, which can negatively impact animal health and productivity. In our previous trial, we found that iodine (I) supplementation (not selenium (Se)) could increase cashmere production. In order to explore the role of I and Se in cashmere growth, we investigated the effects of dietary I and Se supplementation in Liaoning cashmere goats. Serum thyroid hormone status and the mRNA expression levels of skin monodeiodinase (MDII, MDIII) were measured during the cashmere fiber growth period. Forty-eight 2.5-year-old Liaoning cashmere goats (38.6?±?2.65 kg BW) were divided into six equal groups, and their diets were supplemented with I (0, 2, or 4 mg/kg DM) and Se (0 or 1 mg/kg DM) in a 2?×?3 factorial treatment design. The six treatment groups were: I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. Concentrations of I and Se in the basal diet (group I0Se0) were 0.67 and 0.09 mg/kg DM, respectively. The trial started in September of 2009 and lasted 70 days. For every measured parameter, supplemental Se had no significant effect on thyroid hormones, but improved the mRNA expression levels of skin MDIII (P?<?0.01). However, supplemental I increased levels of thyroid hormones (thyroxine and triiodothyronine) and improved the mRNA expression levels of skin MDII (P?<?0.05). These results show that the addition of I to cashmere goat feedstock may be an effective means of increasing cashmere production through thyroid hormones regulating the mRNA expression of skin MDII.  相似文献   

3.
The present study was undertaken to investigate the effects of selenite (SeIV) and selenate (SeVI) on the all-trans retinoic acid (RA)-nuclear retinoic acid receptor (RAR) complex formation in rat liver. We also present the data on the in vitro effects of SeIV on the RARα and the type I iodothyronine 5′-deiodinase gene expression in the GH4C1 rat pituitary tumor cells. SeIV at 1.0 μmol/L was found to reduce (p<0.05) the RA specific binding to RAR in rat liver. Dithiothreitol (DTT), a protective agent for sulfhydryl groups, was found to be slightly effective in protecting the RAR binding properties when affected by SeIV. SeVI at 0.1 μmol/L reduced (p<0.05) the RA specific binding to RAR in liver, as well. Seleno-l-methionine (Se-II) when compared tol-methionine did not exert any inhibitory effect on the formation of the RA-RAR complex. SeIV (up to 2.5 μmol/L) has no inhibitory effect on GH4C1 cell proliferation as well as the prolactin secretion. SeIV at 1.0 μmol/L significantly decreases the rate of mRNA synthesis and/or degradation of the α form of the RAR and causes the enhancement of the type I iodothyronine 5′-deiodinase gene expression in GH4C1 cells. The results based on in vitro experiments suggest that inorganic selenium may affect the RA specific binding to their cognate receptor molecules, and it may reduce expression of the gene encoding the RARα, with the cell vitality and the cell growth remaining unchanged.  相似文献   

4.
From solutions of seleno bridged triangular cluster Mo3Se4(aq)4+ in HCl, crystalline adducts with cucurbituril (Cuc, C36H36N24O12) of different composition, depending on HCl concentration, were isolated. From 2 M HCl, a monosubstituted cationic cluster crystallizes as {[Mo3Se4Cl(H2O)8]2(C36H36N24O12)}Cl6·16H2O (1). Increase in HCl concentration to 6 M gives a pentasubstituted anionic species, (H3O)2[Mo3Se4Cl5(H2O)4]2(C36H36N24O12)·15H2O (2). The crystal structures of 1 and 2 were determined by X-ray crystallography. Each portal of Cuc in 1 is covered with cluster cations [Mo3Se4Cl(H2O)8]3+ like a ‘lid’ on a ‘barrel’. Six water molecules in the trans position to the core μ2-Se form complementary hydrogen bonds with oxygen atoms of Cuc (O?O, 2.713-3.067 Å). In 2 the complementarity is lost and the main structure building factor is short Se?Se interactions (Se?Se, 2.96-3.43 Å) between two adjacent anionic clusters. Stereochemistry of halide substitution in the triangular clusters M3Q4 is analyzed.  相似文献   

5.
Selenium (Se) hyperaccumulator plants can accumulate and tolerate Se up to 1% of their dry weight. Since little is known about below-ground processes of Se uptake and metabolism in hyperaccumulators, X-ray absorption spectromicroscopy was used to characterize the chemical composition and spatial distribution of Se in roots of Astragalus and Stanleya hyperaccumulators. Selenium was present throughout the roots, with the highest levels in the cortex. The main form of Se (48–95%) in both species collected from naturally seleniferous soil was an organic CSeC compound, likely methyl-selenocysteine. In addition, surprisingly high fractions (up to 35%) of elemental Se (Se0) were found, a form so far not reported in plants but commonly produced by Se-tolerant bacteria and fungi. Four fungi collected from hyperaccumulator roots were characterized with respect to their Se tolerance and ability to produce Se0, and then used to inoculate hyperaccumulators in a controlled greenhouse study. The roots of the greenhouse-grown Astragalus and Stanleya contained mainly CSeC; in most plants no Se0 was detected, with the exception of Astragalus nodules and roots of Astragalus inoculated with Alternaria astragali, an Se0-producing fungus. Apparently, Se0-producing endosymbionts including nitrogen-fixing bacteria and endophytic fungi or bacteria in the root can affect Se speciation in hyperaccumulator roots. Microbes that affect plant Se speciation may be applicable in phytoremediation and biofortification, especially if they are promiscuous and affect Se tolerance in crop species.  相似文献   

6.
Trace elements (selenium, zinc, copper) \gb2 microglobulin levels, CD4, and CD8 cell counts have been determined in 80 HIV1 seropositive patients. The study group consisted of 19 females and 61 males with age mean of 35±10 yr, at stage IV of infection (CDC—Atlanta classification) and treated by AZT. No severe renal or liver diseases or hypoalbuminemia were observed in this group. Se values were significantly lower than in normal adults, 48.3±17 μg/L vs 71±12 μg/L; Zn was moderately diminished, 1±0.2 mg/L vs 1.2±0.2 mg/L, whereas copper values were in the normal range, 1.2±0.3 mg/L vs 1.1±0.5 mg/L. Se or Zn deficiency was found in 60 and 30 subjects, respectively. Blood Se and Zn decreases were associated in 23 patients. Moreover, all patients showed higher \gb2 microglobulin values than the upper normal limit of 2.4 mg/L. Negative correlations were found between Zn and \gb2 microglobulin (p<0.005) and between Se and \gb2 microglobulin (p<0.05). Moreover, there was a positive correlation between Se and Zn values (p<0.05). Nineteen subjects died 1 yr later (group I), and 61 remained alive (group II). With respect to the clinical evolution, a significant difference between both groups was found in Se and \gb2 microglobulin levels as well as in CD4 cell counts. The correlations previously observed persisted in group II, whereas no correlation was noted in group I. In addition, the patients of group I had significantly lower Se values, which were below 30 μg/L in 10 cases. These results confirm the prevalence of abnormalities in Se and Zn levels and their relationships with nonspecific markers of immune system activity in more advanced HIV disease. Impairment of trace element status and mainly Se status appeared, at least partially, to reflect the disease activity/progression and subsequently the immune dysregulation.  相似文献   

7.
《Endocrine practice》2022,28(12):1216-1220
BackgroundGraves disease is one of the most common autoimmune thyroid diseases. Thyroid has the highest concentration of selenium (Se) in the body. Se plays a crucial role in the functioning of some thyroid enzymes; however, there are controversial results regarding the administration of serum Se levels in patients with Graves disease.MethodsIn this study, patients with Graves disease with orbitopathy (GO group) or without orbitopathy (GD group) were recruited. Healthy individuals without a history of any disease were enrolled as the control group. Serum Se and thyroid hormone levels, including T3, T4, and thyroid-stimulating hormone (TSH), were measured using atomic absorption and radioimmunoassay techniques, respectively.ResultsIn this cross-sectional study, 60 and 56 patients and 58 healthy subjects were included in the GO, GD, and control groups. Serum Se levels in the GO, GD, and control groups were 94.53 ± 25.36 μg/dL, 96.82 ± 30.3 μg/dL, and 102.55 ± 16.53 μg/dL, respectively (P = .193). There was a reverse association between the serum Se level and thyroid hormones, including T3, T4, and TSH, in the GO group. However, serum Se levels exhibited a significant reverse association with T4 and TSH hormones but not with T3 in the GD group.ConclusionOur results showed no significant differences in the serum Se levels in the GO and GD groups compared with that in the control group. In addition, we did not detect any significant difference in the serum Se levels between the GO and GD groups.  相似文献   

8.
Study on the Relationship between Soil Selenium and Plant Selenium Uptake   总被引:13,自引:0,他引:13  
Various extraction methods have been used to determine selenium (Se) concentrations in soils and plants in the second seleniferous regions of China. Our results show tea Se contents in the study area range from 1.009 to 2.6 mg/kg, which reveal that the tea areas in Ziyang County are in seleniferous regions. The four extraction methods evaluated in this study provide different information concerning soil and plant Se levels. The quality control/quality assurance program for this project indicated there is excellent agreement between total soil Se and extractable Se. For example, phosphate extractable Se results from the field investigation and greenhouse study were found to be highly correlated (R 2 > 0.91) by linear regression analyses. Results from rye seedling experiments further show phosphate extractable Se has significant correlations with plant Se uptake and that a 0.1 M solution of KH2PO4 can be used as the extractant of soil available Se. In the acid soil, the Brassica campestris yield could be significantly reduced when the content of Se6+–Se ≥ 0.5 mg/kg, and the influence on the yield was not as obvious when the content of Se6+–Se reached up to 2.0 mg/kg. The uptake by Brassica campestris of Se6+–Se is higher than that of Se4+–Se. The main factors influencing the biological availability of soil Se, in order of their importance are CaCO3, the presence of silt grains, organic matter and the presence of clay grains. pH could affect KH2PO4 extractable Se through CaCO3.  相似文献   

9.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

10.
Cysteine synthases were partially purified from leaf tissue of 3 selenium-accumulator species (Neptunia amplexicaulis, Astragalus racemosus and A. bisulcatus) and 4 non-accumulators (peas, white clover, A. sinicus and A. hamosus). The properties of all 7 enzymes with respect to cysteine synthesis from S2? and O-acetylserine (OAS) were similar. All of the enzymes also catalysed the synthesis of selenocysteine when S2? was replaced with Se2?. There were no distinct differences between the properties of the enzymes from selenium-accumulator and non-accumulator plants with respect to selenocysteine synthesis. Se2? inhibited the synthesis of cysteine and S2? inhibited the synthesis of selenocysteine implying competition between S2? and Se2? for the enzyme. The affinities of the enzymes for Se2? were substantially greater than for S2?, and Vmax (selenocysteine) was ca 7–48% of Vmax (cysteine). Isolated pea chloroplasts catalysed the synthesis of selenocysteine from OAS and Se2? at a rate of ca 22–26 μmol/mg Chl/hr. Sonicating the chloroplasts slightly enhanced the rate.  相似文献   

11.
We have reacted [Pt(dien)Cl]Cl, [Pt(en)(D2O)2]2+, and [Pt(Me4en)(D2O)2]2+ [Me4en = N,N,N′,N′-tetramethylethylenediamine] with selenomethionine (SeMet). When [Pt(dien)Cl]Cl is reacted with SeMet, [Pt(dien)(SeMet-Se)]2+ is formed; two Se-CH3 resonances are observed due to the different chiralities at the Se atom upon platination. In a reaction of [Pt(dien)Cl]Cl with an equimolar mixture of SeMet and Met, the SeMet product forms more quickly though a slow equilibrium with approximately equal amounts of both products is reached. [Pt(Me4en)(D2O)2]2+ reacts with SeMet to form [Pt(Me4en)(SeMet-Se)(D2O)]2+ initially but forms [Pt(Me4en)(SeMet-Se,N)]+ ultimately. One stereoisomer of the chelate, assigned to the R chirality at the Se atom, dominates within the first few minutes of reaction. [Pt(en)(D2O)2]2+ forms a variety of products depending on reaction stoichiometry; when one equivalent or less of SeMet is added, the dominant product is [Pt(en)(SeMet-Se,N)]+. In the presence of excess SeMet, [Pt(en)(SeMet-Se)2]2+ is the dominant initially, but displacement of the en ligand occurs leading to [Pt(SeMet-Se,N)2] as the eventual product. Displacement of the en ligand from [Pt(en)(SeMet-Se,N)]+ does not occur. In reactions of K2PtCl4 with two equivalents of SeMet, [Pt(SeMet-Se,N)2] is formed, and three sets of resonances are observed due to different chiralities at the Se atoms. Only the cis geometric isomers are observed by 1H and 195Pt NMR spectroscopy.  相似文献   

12.
One group of C4, species utilize a NAD-malic enzyme to decarboxylate C4 acids. This enzyme, together with a major isoenzyme of aspartate aminotransferase and a NAD-malate dehydrogenase, is localized in the mitochondria of the bundle sheath cells and the following pathway for C4, acid decarboxylation has been proposed: aspartate → oxaloacetate → malate → CO2 + pyruvate. The present study reports that mitochondria isolated from the bundle sheath cells of one of these species, Atriplex spongiosa, are capable of decarboxylating C4, acids at rates between 5 and 8 μmol/min/mg chlorophyll. For maximum decarboxylating activities, these particles required aspartate, 2-oxoglutarate and phosphate as well as malate; in the absence of any one of these compounds, activity was reduced to 0.3–0.8 μmol/min/mg chlorophyll. Rates for C4 acid decarboxylation were much greater than the respiratory activities of these particles, including the capacity to form citrate or to oxidize malate, succinate, pyruvate or 2-oxoglutarate (0.03–0.6 μmol/min/mg chlorophyll). A comparison of mitochondria prepared from leaves of various C4, and C3, species showed that only the mitochondria from the bundle sheath cells of plants with high NAD-malic enzyme have capacities for rapid C4 acid decarboxylation. The effects of a variety of experimental conditions on C4 acid decarboxylating activities are also reported. The role of these mitochondria in C4 photosynthesis is discussed.  相似文献   

13.
Selenium (Se) is an essential element, cofactor for glutathione peroxidase (GSHPx) activity, whose deficiency may induce modifications in the cellular antioxidative status and induce the appearance of different diseases. Current views suggest that a serum Se concentration inferior to 45 μg/L may correlate with an increased risk of coronary hearth diseases, coronary atherosclerosis and cancer. Since the Se concentration in human blood varies between geographical areas, we initiated a study to evaluate the Se status in the general healthy population of Barcelona. Serum Se concentration was investigated in a random sample of 150 subjects (age range 18–70 yr) by graphite furnace atomic spectrometry (FLAAS). L'vov platform, Zeeman background correction, and other specifications of stabilized temperature platform furnace (STPF) concept were followed. The results show that in the general population of Barcelona, Se serum concentration ranges between 60 and 106 μg/L (X=80.7±10 μg/L). These values can be considered within the safe limits, since no subject was found with a concentration lower than the threshold of 45 μg/L.  相似文献   

14.
Selenium (Se) reduces cadmium (Cd) toxicity in adult animals, but its effects in newborn animals are still unknown. This study investigated Cd (as CdCl2) absorption, distribution, and retention in suckling rats receiving oral Se supplementation (as Na2SeO3) in equimolar doses (8 μmol Cd and/or Se per kg b.w./day). Selenium was given either before and during Cd exposure (Sepre + Cd group; pre-treatment group) or only during Cd exposure (Se + Cd group). Rats were treated from postnatal day (PND) 6–14 as follows: controls (H2O, PND 6–14), Se (PND 10–14), Cd (PND 10–14), Sepre + Cd (Se PND 6–14 + Cd PND 10–14) and Se + Cd (Se + Cd PND 10–14). Selenium supplementation, especially pre-treatment, decreased Cd levels in the blood, brain, liver and kidney of suckling rats. Selenium levels in plasma, brain, and kidney also decreased. These findings suggest that higher Se intake could efficiently reduce Cd retention during the suckling period.  相似文献   

15.
Liver samples from 94 adult men and eight fetuses were obtained at autopsy from the Helsinki region. After lyophilization, the samples were analyzed for selenium (Se) both before and after extraction of fat with hexane/isopropanol. An inverse exponential relationship (R 2=0.63) existed between unextracted adult liver Se concentration and the corresponding liver fat concentration. The relationship ceased to exist when Se was determined on the defatted tissue. The mean defatted adult liver Se concentration, 16.8 μM/kg dry wt, was significantly higher (p<0.001) than that of unextracted samples, 12.1 μM/kg. The Se concentration of fetal liver was not affected by the fat extraction. An age relationship (p<0.01) was found between subjects under 25 y and those over 40 y when the Se concentration was expressed per unextracted liver tissue but when expressed per defatted liver tissue the difference between age groups widened to comprise subjects over 60 y. Hepatic fat (mean Se concentration 2.7 μM/kg) thus constitutes a diluting factor. We conclude that the Se concentration of fatty human liver results in an underestimation of the selenium status of subjects who have an unphysiologically high liver fat concentration.  相似文献   

16.
Forty-eight 2-year-old Liaoning Cashmere goats (body weight = 38.0 ± 2.94 kg) were used to investigate the effects of dietary iodine (I) and selenium (Se) supplementation on nutrient digestibility, serum thyroid hormones, and antioxidant status during the cashmere telogen period to learn more about the effects of dietary I and Se on nutrition or health status of Cashmere goats. The goats were equally divided into six groups of eight animals each that were treated with 0, 2, or 4 mg of supplemental I/kg dry matter (DM) and 0 or 1 mg of supplemental Se/kg DM in a 2 × 3 factorial arrangement of treatments. The six treatments were I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. The concentrations of I and Se in the basal diet were 0.67 and 0.09 mg/kg DM, respectively. The study started in March and proceeded for 45 days. Supplemental I or Se alone had no effect on nutrient digestibility and nitrogen metabolism. However, the interaction between I and Se was significant regarding the digestibility of acid detergent fiber (ADF; P < 0.05), and compared with group I4Se1, the digestibility of ADF was significantly increased in group I4Se0 (P < 0.05). Selenium supplementation did not affect serum triiodothyronine (T3) or thyroxine (T4) concentrations. However, the concentration of serum T4 but not that of T3 was significantly increased with I supplementation (P < 0.05). In addition, serum superoxide dismutase (SOD) activity was not affected (P > 0.05), but serum glutathione peroxidase (GSH-Px) activity was significantly decreased by I supplementation (P < 0.05). The antioxidant status was improved by Se supplementation, and the activities of SOD and GSH-Px were significantly increased (P < 0.05).  相似文献   

17.
Paul Hattersley 《Phytochemistry》1985,24(10):2277-2279
Statistical analysis of Km (CO2) values of ribulose-1,5-bisphosphate (RuBP) carboxylase from 35 C4 grass species shows that the mean value for PEP-carboxykinase (PCK) type C4 species (41.4±s.e. 2.2 μM CO2) is significantly different from that of NAD-malic enzyme (NAD-ME) type species (55.3±3.1 μM CO2) or NADP-malic enzyme (NADP-ME type species (52.5±s.e. 2.0μM CO2). These C4 type differences remain detectable within both the eu-panicoid and chloridoid grass subfamilies. By contrast, no between-subfamily differences were found within C4 types. Variation in Km (CO2) values of RuBP carboxylase may be related to in vivo differences in CO2 concentration at the enzyme site, mediated perhaps by differences in CO2-leakiness of C4 leaf ‘photosynthetic carbon reduction’ (PCR or ‘Kranz’) tissue.  相似文献   

18.

Background

Thyroid physiology is closely related to oxidative changes. The aim of this controlled study was to evaluate the levels of nutritional anti-oxidants such as vitamin C, zinc (Zn) and selenium (Se), and to investigate any association of them with parameters of thyroid function and pathology including benign and malignant thyroid diseases.

Methods

This controlled evaluation of Se included a total of 1401 subjects (1186 adults and 215 children) distributed as follows: control group (n = 687), benign thyroid disease (85 children and 465 adults); malignant thyroid disease (2 children and 79 adults). Clinical evaluation of patients with benign thyroid disease included sonography, scintigraphy, as well as the determination of fT3, fT4, TSH, thyroid antibodies levels, Se, Zn, and vitamin C. Besides the routine oncological parameters (TG, TSH, fT4, ultrasound) Se was also determined in the cases of malignant disease. The local control groups for the evaluation of Se levels were taken from a general practice (WOMED) as well as from healthy active athletes. Blood samples were collected between 8:00 and 10:30 a.m. All patients lived in Innsbruck. Statistical analysis was done using SPSS 14.0. The Ho stated that there should be no differences in the levels of antioxidants between controls and thyroid disease patients.

Results

Among the thyroid disease patients neither vitamin C, nor Zn nor Se correlated with any of the following parameters: age, sex, BMI, body weight, thyroid scintigraphy, ultrasound pattern, thyroid function, or thyroid antibodies. The proportion of patients with benign thyroid diseases having analyte concentrations below external reference cut off levels were 8.7% of cases for vitamin C; 7.8% for Zn, and 20.3% for Se. Low Se levels in the control group were found in 12%. Se levels were significantly decreased in cases of sub-acute and silent thyroiditis (66.4 ± 23.1 μg/l and 59.3 ± 20.1 μg/l, respectively) as well as in follicular and papillary thyroid carcinoma. The mean Se level in the control group was 90.5 ± 20.8 μg/l.

Conclusion

The H0 can be accepted for vitamin C and zinc levels whereas it has to be rejected for Se. Patients with benign or malignant thyroid diseases can present low Se levels as compared to controls. Low levels of vitamin C were found in all subgroups of patients.  相似文献   

19.
Toxicological and pharmacological studies demonstrated that the introduction of functional groups into the aromatic ring of diphenyl diselenide alter its effect. The aim of this study was to evaluate the in vitro effect of m-trifluoromethyl-diphenyl diselenide (m-CF3–C6H4Se)2, p-chloro-diphenyl diselenide (p-Cl–C6H4Se)2 and p-methoxyl-diphenyl diselenide (p-CH3O–C6H4Se)2 on δ-aminolevulinate dehydratase (δ-ALA-D) and Na+, K+-ATPase activities in rat brain homogenates. Diselenides inhibited δ-ALA-D activity (IC50 4–6 μM [concentration inhibiting 50%]), and dithiothreitol (DTT) restored the enzyme activity. ZnCl2 (100 μM) did not restore δ-ALA-D inhibition caused by (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2. Na+, K+-ATPase activity was more sensitive to (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2 (IC50 6 μM) than (p-CH3O–C6H4Se)2 and (PhSe)2 (IC50 45 and 31 μM, respectively). DTT restored the activity of Na+, K+-ATPase inhibited by diselenides. The effect of diselenides on Na+/K+-ATPase is dependent on their substitutions in the aromatic ring. The mechanism through which diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities involves the oxidation of thiol groups.  相似文献   

20.
Trace elements and oxidative stress are associated with glycemic control and diabetic complications in type 1 diabetes mellitus. In this study, we analyzed the levels of serum copper, zinc, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and urinary MDA and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in 33 type 1 diabetic patients with optimal and suboptimal glycemic control (HbA1C < 9.0%) and 40 patients with poor glycemic control (HbA1C  9%) and 27 age- and sex-matched non-diabetic controls to evaluate the differences between these markers in different glycemic control states. Diabetic patients, especially poor-glycemic-control subjects (HbA1C  9%), exhibited significantly lower levels of serum zinc and increased levels of serum copper (and, therefore, increased serum copper-to-zinc ratios), serum SOD, blood MDA, and urinary MDA and 8-OHdG, relative to non-diabetic subjects. Furthermore, significant correlations existed in these patients between the serum copper, serum copper-to-zinc ratio, and urinary MDA (all p < 0.001) and the levels of urinary 8-OHdG (p = 0.007) and HbA1C. Our results suggest that high serum copper levels and oxidative stress correlate with glycemic control. Therefore, strict glycemic control, decreased oxidative stress, and a lower copper concentration might prevent diabetic complications in patients with type 1 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号