首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptotic DNA fragmentation minimizes the risk of transferring genetic information from apoptotic cancer cells to the neighboring cells. We have reported previously that caspase-deficient human renal cell carcinoma (RCC) lines were almost completely resistant to apoptosis in response to cytotoxic agents. In the present report we examined apoptotic process in caspase competent RCC-91 cells. Apoptosis in RCC-91 cells was accompanied by activation of caspases-3 and -9; cleavage of PARP and DFF45 proteins; typical apoptotic nuclei fragmentation and mitochondrial collapse. Nevertheless, DNA in these cells was not degraded into oligonucleosomal fragments compared to control Jurkat cells. Expression of caspase-activated DNase, DFF40 accountable for characteristic ladder pattern was easily detectable in Jurkat but not renal cancer cells, providing one possible explanation for the lack of oligonucleosomal DNA fragmentation in apoptotic RCC cells. Lack of typical DNA fragmentation indicates a potential threat of transferring genetic information from one tumor cell to another or to the neighboring healthy cells.  相似文献   

2.
DNA fragmentation is common phenomenon for apoptotic cell death. DNA fragmentation factor, called DFF40 (CAD: mouse homologue), is a main nuclease for apoptotic DNA fragmentation. Nuclease activity of DFF40 is normally inhibited by DFF45 by tight interaction via CIDE domain without apoptotic stimuli. Once effector caspase is activated during apoptosis signaling, it cleave DFF45, allowing DFF40 to enter the nucleus and cleave chromosomal DNA. Unlike mammalian system, apoptotic DNA fragmentation in the fly might be controlled by four DFF-related proteins, known as Drep1, Drep2, Drep3 and Drep4. Although the function of Drep1 and Drep4 is well known as DFF45 and DFF40 homologues, respectively, the function of Drep2 and Drep3 is still unclear. DFF-related proteins contain a conserved CIDE domain of ~90 amino acid residues that is involved in protein–protein interaction. Here, we showed that Drep1 directly bind to Drep2 as well as Drep4 via CIDE domain. In addition, we found that the interaction of Drep2 and Drep4 to Drep1 was not competitive indicating that Drep2 and Drep4 bind different place of Drep1. All together, we suggest that Drep1 might be involved in apoptotic DNA fragmentation of fly system by direct interaction with Drep2 as well as Drep4.  相似文献   

3.
During apoptosis, endonucleases cleave DNA into 50-300-kb fragments and subsequently into internucleosomal fragments. DNA fragmentation factor (DFF) is implicated in apoptotic DNA cleavage; this factor comprises DFF45 and DFF40 subunits, the former of which acts as a chaperone and inhibitor of the catalytic subunit and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks internucleosomal DNA fragmentation and confers resistance to apoptosis in primary thymocytes. The role of DFF-mediated DNA fragmentation in apoptosis was investigated in primary fibroblasts from DFF45(-/-) and control (DFF45(+/+)) mice. DFF45 deficiency rendered fibroblasts resistant to apoptosis induced by tumor necrosis factor (TNF). TNF induced rapid cleavage of DNA into approximately 50-kb fragments in DFF45(+/+) fibroblasts but not in DFF45(-/-) cells, indicating that DFF mediates this initial step in DNA processing. The TNF-induced activation of poly(ADP-ribose) polymerase (PARP), which requires PARP binding to DNA strand breaks, and the consequent depletion of the PARP substrate NAD were markedly delayed in DFF45(-/-) cells, suggesting a role for DFF in PARP activation. The activation of caspase-3 and mitochondrial events important in apoptotic signaling, including the loss of mitochondrial membrane potential and the release of cytochrome c, induced by TNF were similarly delayed in DFF45(-/-) fibroblasts. DFF45(-/-) and DFF45(+/+) cells were equally sensitive to the DNA-damaging agent and PARP activator N-methyl-N'-nitro-N-nitrosoguanidine. Inhibition of PARP by 3-aminobenzamide partially protected DFF45(+/+) cells against TNF-induced death and inhibited the associated release of cytochrome c and activation of caspase-3. These results suggest that the generation of 50-kb DNA fragments by DFF, together with the activation of PARP, mitochondrial dysfunction, and caspase-3 activation, contributes to an amplification loop in the death process.  相似文献   

4.
A variety of endonucleases has been implicated in apoptotic DNA fragmentation. DNA fragmentation factor (DFF) is one of the endonucleases responsible for DNA fragmentation. Since an oligonucleosomal DNA ladder is not induced in apoptotic Molt-4 cells, we investigated whether or not the absence of ladder formation is related to an inability of DFF endonuclease in the cells. Semiquantitative RT-PCR analysis showed that the mRNA level of DFF-40 and DFF-45 in Molt-4 cells was approximately the same, compared with in other cells, which exhibit different levels of the fragmentation in apoptosis. When Molt-4 cells were induced to undergo apoptosis by neocarzinostatin (NCS) treatment, both caspase-3 activation and DFF-45 cleavage were observed. Furthermore, DFF immunoprecipitated from Molt-4 cells exhibited DNA degradation activity. These results suggest that functional expression of DFF is not sufficient for the induction of DNA fragmentation in Molt-4 cells.  相似文献   

5.
Oligonucleosomal fragmentation of nuclear DNA is the late-stage apoptosis hallmark. In apoptotic mammalian cells the fragmentation is catalyzed by DFF40/CAD DNase primarily activated by caspase 3 through the site-specific proteolytic cleavage of DFF45/ICAD. A deletion in the casp3 gene of human breast adenocarcinoma MCF-7 results in lack of procaspase 3 in these cells. The absence of caspase 3 in MCF-7 leads to disability to activate oligonucleosomal DNA fragmentation in TNF-alpha induced cell death. In this study, sodium palmitate was used as an apoptotic stimulus for MCF-7. It has been shown that palmitate but not TNF-alpha induces both apoptotic changes in nuclei and oligonucleosomal DNA fragmentation in casp3-mutated MCF-7. Activation and accumulation of 40-50 kD DFF40-like DNases in nuclei of palmitate-treated apoptotic MCF-7 were detected by SDS-DNA-PAGE assay. Microsomal fraction of apoptotic MCF-7 does not contain any detectable DNases, but activates 40-50 kD nucleases when incubated with human placental chromatin. Furthermore, microsomes of apoptotic MCF-7 induce oligonucleosomal fragmentation of chromatin in a cell-free system. Both the activation of DNases and chromatin fragmentation are suppressed in the presence of the caspase 3/7 inhibitor Ac-DEVD-CHO. Microsome-associated caspase 7 is suggested to play an essential role in the induction of oligonucleosomal DNA fragmentation in casp3-deficient MCF-7 cells.  相似文献   

6.
DFF ((DNA Fragmentation Factor) is a heterodimer composed of 40 kDa (DFF40, CAD) and 45 kDa (DFF45, ICAD) subunits. During apoptosis, activated caspase-3 cleaves DFF45 and activates DFF40, a DNase that targets nucleosomal linker region and cleaves chromatin DNA into nucleosomal fragments. We have previously reported that HT induced apoptosis in HL-60 cells, and intracellular Ca2+ chelator BAPTA blocked apoptosis-associated DNA fragmentation induced by HT. We report here that HT also induced activation of caspase-3 and cleavage of DFF45. BAPTA prevented neither the caspase-3 activation nor the cleavage of DFF45. Mitochondrial membrane potential was disrupted in BAPTA-AM treated cells. However, BAPTA did prevent DNA fragmentation and chromatin condensation in HT-treated cells. These data suggest a novel role for intracellular calcium in regulating apoptotic nuclease that causes DNA fragmentation and chromatin condensation.  相似文献   

7.
Nuclear changes, including internucleosomal DNA fragmentation, are classical manifestations of apoptosis for which the biochemical mechanisms have not been fully elucidated, particularly in neuronal cells. We have cloned the rat DNA fragmentation factor 35/inhibitor of caspase-activated DNase (short form) (DFF35/ICAD(S)) and found it to be the predominant form of ICAD present in rodent brain cells as well as in many other types of cells. DFF35/ICAD(S) forms a functional complex with DFF40/caspase-activated DNase (CAD) in the nucleus, and when its caspase-resistant mutant is over-expressed, it inhibits the nuclease activity, internucleosomal DNA fragmentation, and nuclear fragmentation but not the shrinkage and condensation of the nucleus, in neuron-differentiated PC12 cells in response to apoptosis inducers. DFF40/CAD is found to be localized mainly in the nucleus, and during neuronal apoptosis, there is no evidence of further nuclear translocation of this molecule. It is further suggested that inactivation of DFF40/CAD-bound DFF35 and subsequent activation of DFF40/CAD during apoptosis of neuronal cells may not occur in the cytosol but rather in the nucleus through a novel mechanism that requires nuclear translocation of caspases. These results establish that DFF35/ICAD(S) is the endogenous inhibitor of DFF40/CAD and caspase-dependent apoptotic DNA fragmentation in neurons.  相似文献   

8.
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks.  相似文献   

9.
DNA fragmentation factor (DFF) comprises DFF45 and DFF40 subunits, the former of which acts as an inhibitor of the latter (the catalytic subunit) and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks the generation of 50-kb DNA fragments and confers resistance to apoptosis. We recently suggested that the early fragmentation of DNA by DFF and the consequent activation of poly(ADP-ribose) polymerase-1 (PARP-1), mitochondrial dysfunction, and activation of caspase-3 contribute to an amplification loop in the apoptotic process. To verify the existence of such a loop, we have now examined the effects of restoring DFF expression in DFF45-deficient fibroblasts. Co-transfection of mouse DFF45(-/-) fibroblasts with plasmids encoding human DFF40 and DFF45 reversed the apoptosis resistance normally observed in these cells. The DFF45(-/-) cells regained the ability to fragment their DNA into 50-kb pieces in response to TNF, which resulted in a marked activation of PARP-1 and a concomitant depletion of intracellular NAD. DFF expression also resulted in an increase both in cytochrome c release into the cytosol and in caspase-3 activation triggered by TNF. These results support the importance of DFF, PARP-1, mitochondria, and caspase-3 in an amplification phase of TNF-induced apoptosis.  相似文献   

10.
11.
12.
Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.  相似文献   

13.
The sequential generation of large-scale DNA fragments followed by internucleosomal chromatin fragmentation is a biochemical hallmark of apoptosis. One of the nucleases primarily responsible for genomic DNA fragmentation during apoptosis is called DNA Fragmentation Factor 40 (DFF40) or Caspase-activated DNase (CAD). DFF40/CAD is a magnesium-dependent endonuclease specific for double stranded DNA that generates double strand breaks with 3'-hydroxyl ends. DFF40/CAD is activated by caspase-3 that cuts the nuclease's inhibitor DFF45/ICAD. The nuclease preferentially attacks chromatin in the internucleosomal linker DNA. However, the nuclease hypersensitive sites can be detected and DFF40/CAD is potentially involved in large-scale DNA fragmentation as well. DFF40/CAD-mediated DNA fragmentation triggers chromatin condensation that is another hallmark of apoptosis.  相似文献   

14.
15.
Toward the end of the 20th and beginning of the 21st centuries, clever in vitro biochemical complementation experiments and genetic screens from the laboratories of Xiaodong Wang, Shigekazu Nagata, and Ding Xue led to the discovery of two major apoptotic nucleases, termed DNA fragmentation factor (DFF) or caspase-activated DNase (CAD) and endonuclease G (Endo G). Both endonucleases attack chromatin to yield 3'-hydroxyl groups and 5'-phosphate residues, first at the level of 50-300 kb cleavage products and next at the level of internucleosomal DNA fragmentation, but these nucleases possess completely different cellular locations in normal cells and are regulated in vastly different ways. In non-apoptotic cells, DFF exists in the nucleus as a heterodimer, composed of a 45 kD chaperone and inhibitor subunit (DFF45) [also called inhibitor of CAD (ICAD-L)] and a 40 kD latent nuclease subunit (DFF40/CAD). Apoptotic activation of caspase-3 or -7 results in the cleavage of DFF45/ICAD and release of active DFF40/CAD nuclease. DFF40's nuclease activity is further activated by specific chromosomal proteins, such as histone H1, HMGB1/2, and topoisomerase II. DFF is regulated by multiple pre- and post-activation fail-safe steps, which include the requirements for DFF45/ICAD, Hsp70, and Hsp40 proteins to mediate appropriate folding during translation to generate a potentially activatable nuclease, and the synthesis in stoichiometric excess of the inhibitors (DFF45/35; ICAD-S/L). By contrast, Endo G resides in the mitochondrial intermembrane space in normal cells, and is released into the nucleus upon apoptotic disruption of mitochondrial membrane permeability in association with co-activators such as apoptosis-inducing factor (AIF). Understanding further regulatory check-points involved in safeguarding non-apoptotic cells against accidental activation of these nucleases remain as future challenges, as well as designing ways to selectively activate these nucleases in tumor cells.  相似文献   

16.
Effects of phosphocreatine on apoptosis in a cell-free system.   总被引:1,自引:0,他引:1  
The characteristic morphological and biochemical changes during caspase-mediated apoptosis can be reproduced to a large extent in a Xenopus laevis egg extract cell-free system by addition of mouse liver nuclei and exogenous cytochrome c. We show that in this system phosphocreatine accelerated the apoptotic morphological changes of the nuclei, but selectively inhibited DNA fragmentation. Western blot showed that the degradation of lamins A and C is accelerated, which is possibly responsible for the nuclear changes during cell apoptosis. However, the degradation of ICAD/DFF45-like protein in the egg extracts is inhibited in a time-dependent manner. Exogenous creatine, ATP, and several organic acids have no effect on DNA fragmentation, excluding the possibility that creatine, ATP, or acidic conditions resulting from phosphocreatine are responsible for inhibiting DNA fragmentation. Lithium chloride, a kinase inhibitor, can overcome the phosphocreatine effects and can restore DNA fragmentation. Our results indicate that phosphocreatine protects ICAD/DFF45-like protein from proteolysis, probably through kinase actions, resulting in its resistance to caspase cleavage and leading to an inhibition of DNA fragmentation.  相似文献   

17.
Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation.  相似文献   

18.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric DNase complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we measured the expression of DFF45 during mouse development and compared DNA fragmentation and viability of DFF45-deficient cells with wild-type control cells after activation of apoptosis. We found that DFF45 is ubiquitously expressed throughout mouse development. Moreover, DFF45-deficient thymocytes are resistant to DNA fragmentation with in vivo dexamethasone treatment. Furthermore, primary thymocytes from DFF45 mutant mice are also more resistant to apoptosis than wild-type control cells on exposure to several apoptotic stimuli. Dying DFF45-deficient thymocytes exhibit different morphology than wild-type control cells in that they show reduced degree of chromatin condensation, absent nuclear fragmentation, intranuclear cytoplasmic invagination, and striking nuclear chromatin conglutination after release from disintegrating cells. These results indicate that DFF45 is essential during normal apoptosis.  相似文献   

19.
CD45 is a type I transmembrane molecule with phosphatase activity which comprises up to 10% of the cell surface area in nucleated haematopoietic cells. We have previously demonstrated the absence of nuclear apoptosis in CD45-negative T cells after chemical-induced apoptosis. The aim of this study was to characterize the role of CD45 in nuclear apoptosis. In contrast to wild type CD45-positive T cells, the CD45-deficient T cell lines are resistant to the induction of DNA fragmentation and chromatin condensation following tributyltin (TBT) or H2O2 exposure, but not to cycloheximide-induced apoptosis. CD45 transfection in deficient cell lines led to the restoration of chromatin condensation and DNA fragmentation following TBT exposure. In both CD45-positive and negative T cell lines, TBT exposure mediates intracellular calcium mobilization, caspase-3 activation and DFF45 cleavage. Moreover, DNA fragmentation was also induced by TBT in cells deficient in expression of p56lck, ZAP-70 and SHP-1. Subcellular partitioning showed a decrease in nuclear localisation of caspase-3 and DFF40. Together, these results demonstrate for the first time, that CD45 expression plays a key role in internucleosomal DNA fragmentation and chromatin condensation processes during apoptosis. CD45 activity or its substrates’ activity, appears to be located downstream of caspase-3 activation and plays a role in retention of DFF40 in the nucleus. Philippe Desharnais and Geneviève Dupéré-Minier have contributed equally to this work.  相似文献   

20.
DNA fragmentation is the hallmark of apoptotic cells and mainly mediated by the DNA fragmentation factor DFF40(CAD)/DFF45(ICAD). DFF40 is a novel nuclease, whereas DFF45 is an inhibitor that can suppress the nuclease activity. Apoptotic DNA fragmentation in the fly is controlled by four DFF-related proteins, known as Drep1, 2, 3 and 4. However, the functions of Drep2 and Drep3 are totally unknown. Here, we found that Drep2 is a novel nuclease whose activity is inhibited by Drep3 through a tight interaction with the CIDE domain. Our results suggest that the fly has dual apoptotic DNA fragmentation systems: Drep1: Drep4 and Drep2: Drep3 complexes.Structured summary of protein interactionsDrep2 CIDE and Drep-3 CIDE bind by blue native page (View interaction)Drep2 CIDE and Drep-3 CIDE bind by molecular sieving (View interaction)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号