首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA genome of hepatitis C virus (HCV) terminates with a highly conserved 98-base sequence. Enzymatic and chemical approaches were used to define the secondary structure of this 3'-terminal element in RNA transcribed in vitro from cloned cDNA. Both approaches yielded data consistent with a stable stem-loop structure within the 3'-terminal 46 bases. In contrast, the 5' 52 nucleotides of this 98-base element appear to be less ordered and may exist in multiple conformations. Under the experimental conditions tested, interaction between the 3' 98 bases and upstream HCV sequences was not detected. These data provide valuable information for future experiments aimed at identifying host and/or viral proteins which interact with this highly conserved RNA element.  相似文献   

2.
Structure of the 3' terminus of the hepatitis C virus genome.   总被引:10,自引:7,他引:3       下载免费PDF全文
Hepatitis C virus (HCV), a positive-strand RNA virus, has been considered to have a poly(U) stretch at the 3' terminus of the genome. We previously found a novel 98-nucleotide sequence downstream from the poly(U) stretch on the HCV genome by primer extension analysis of the 5' end of the antigenomic-strand RNA in infected liver (T. Tanaka, N. Kato, M.-J. Cho, and K. Shimotohno, Biochem. Biophys. Res. Commun. 215: 744-749, 1995). Here, we show that the novel sequence is a highly conserved 3' tail of the HCV genome. We repeated primer extension analyses with four HCV-infected liver samples and found the 98-nucleotide sequence in all the samples. Furthermore, experiments in which RNA oligonucleotide was ligated to the 3' end of the HCV genome existing in infectious serum revealed nearly identical 3' termini with no extra sequence downstream from the 98-nucleotide sequence, suggesting that this sequence is the tail of the HCV genome. This tail sequence was highly conserved among individuals and even between the two most genetically distant HCV types, II/1b and III/2a. Computer modeling predicted that the tail sequence can form a conserved stem-and-loop structure. These results suggest that the novel 3' tail is a common structure of the HCV genome that plays an important role in initiation of genomic replication.  相似文献   

3.
4.
Yi M  Lemon SM 《Journal of virology》2003,77(6):3557-3568
We describe a mutational analysis of the 3' nontranslated RNA (3'NTR) signals required for replication of subgenomic hepatitis C virus (HCV) RNAs. A series of deletion mutants was constructed within the background of an HCV-N replicon that induces the expression of secreted alkaline phosphatase in order to examine the requirements for each of the three domains comprising the 3'NTR, namely, the highly conserved 3' terminal 98-nucleotide (nt) segment (3'X), an upstream poly(U)-poly(UC) [poly(U/UC)] tract, and the variable region (VR) located at the 5' end of the 3'NTR. Each of these domains was found to contribute to efficient replication of the viral RNA in transiently transfected hepatoma cells. Replication was not detected when any of the three putative stem-loop structures within the 3'X region were deleted. Similarly, complete deletion of the poly(U/UC) tract abolished replication. Replacement of a minimum of 50 to 62 nt of poly(U/UC) sequence was required for detectable RNA replication when the native sequence was restored in a stepwise fashion from its 3' end. Lengthier poly(U/UC) sequences, and possibly pure homopolymeric poly(U) tracts, were associated with more efficient RNA amplification. Finally, while multiple deletion mutations were tolerated within VR, each led to a partial loss of replication capacity. The impaired replication capacity of the deletion mutants could not be explained by reduced translational activity or by decreased stability of the RNA, suggesting that each of these mutations may impair recognition of the RNA by the viral replicase during an early step in negative-strand RNA synthesis. The results indicate that the 3'-most 150 nt of the HCV-N genome [the 3'X region and the 3' 52 nt of the poly(U/UC) tract] contain RNA signals that are essential for replication, while the remainder of the 3'NTR plays a facilitating role in replication but is not absolutely required.  相似文献   

5.
6.
7.
P Y Shi  W Li    M A Brinton 《Journal of virology》1996,70(9):6278-6287
The first 96 nucleotides of the 5'noncoding region (NCR) of West Nile virus (WNV) genomic RNA were previously reported to form thermodynamically predicted stem-loop (SL) structures that are conserved among flaviviruses. The complementary minus-strand 3' NCR RNA, which is thought to function as a promoter for the synthesis of plus-strand RNA, forms a corresponding predicted SL structure. RNase probing of the WNV 3' minus-strand stem-loop RNA [WNV (-)3' SL RNA] confirmed the existence of a terminal secondary structure. RNA-protein binding studies were performed with BHK S100 cytoplasmic extracts and in vitro-synthesized WNV (-)3' SL RNA as the probe. Three RNA-protein complexes (complexes 1,2, and 3) were detected by a gel mobility shift assay, and the specificity of the RNA-protein interactions was confirmed by gel mobility shift and UV-induced cross-linking competition assays. Four BHK cell proteins with molecular masses of 108, 60, 50, and 42 kDa were detected by UV-induced cross-linking to the WNV (-)3' SL RNA. A preliminary mapping study indicated that all four proteins bound to the first 75 nucleotides of the WNV 3' minus-strand RNA, the region that contains the terminal SL. A flavivirus resistance phenotype was previously shown to be inherited in mice as a single, autosomal dominant allele. The efficiencies of infection of resistant cells and susceptible cells are similar, but resistant cells (C3H/RV) produce less genomic RNA than congenic, susceptible cells (C3H/He). Three RNA-protein complexes and four UV-induced cross-linked cell proteins with mobilities identical to those detected in BHK cell extracts with the WNV (-)3' SL RNA were found in both C3H/RV and C3H/He cell extracts. However, the half-life of the C3H/RV complex 1 was three times longer than that of the C3H/He complex 1. It is possible that the increased binding activity of one of the resistant cell proteins for the flavivirus minus-strand RNA could result in a reduced synthesis of plus-strand RNA as observed with the flavivirus resistance phenotype.  相似文献   

8.
9.
In our attempt to obtain further information on the replication mechanism of the hepatitis C virus (HCV), we have studied the role of sequences at the 3'-end of HCV minus-strand RNA in the initiation of synthesis of the viral genome by viral RNA-dependent RNA polymerase (RdRp). In this report, we investigated the template and binding properties of mutated and deleted RNA fragments of the 3'-end of the minus-strand HCV RNA in the presence of viral polymerase. These mutants were designed following the newly established secondary structure of this viral RNA fragment. We showed that deletion of the 3'-SL-A1 stem loop significantly reduced the level of RNA synthesis whereas modifications performed in the SL-B1 stem loop increased RNA synthesis. Study of the region encompassing the 341 nucleotides of the 3'-end of the minus-strand RNA shows that these two hairpins play a very limited role in binding to the viral polymerase. On the contrary, deletions of sequences in the 5'-end of this fragment greatly impaired both RNA synthesis and RNA binding. Our results strongly suggest that several domains of the 341 nucleotide region of the minus-strand 3'-end interact with HCV RdRp during in vitro RNA synthesis, in particular the region located between nucleotides 219 and 239.  相似文献   

10.
Hardy RW  Rice CM 《Journal of virology》2005,79(8):4630-4639
The 3'-untranslated region of the Sindbis virus genome is 0.3 kb in length with a 19-nucleotide conserved sequence element (3' CSE) immediately preceding the 3'-poly(A) tail. The 3' CSE and poly(A) tail have been assumed to constitute the core promoter for minus-strand RNA synthesis during genome replication; however, their involvement in this process has not been formally demonstrated. Utilizing both in vitro and in vivo analyses, we have examined the role of these elements in the initiation of minus-strand RNA synthesis. The major findings of this study with regard to efficient minus-strand RNA synthesis are the following: (i) the wild-type 3' CSE and the poly(A) tail are required, (ii) the poly(A) tail must be a minimum of 11 to 12 residues in length and immediately follow the 3' CSE, (iii) deletion or substitution of the 3' 13 nucleotides of the 3' CSE severely inhibits minus-strand RNA synthesis, (iv) templates possessing non-wild-type 3' sequences previously demonstrated to support virus replication do not program efficient RNA synthesis, and (v) insertion of uridylate residues between the poly(A) tail and a non-wild-type 3' sequence can restore promoter function to a limited extent. This study shows that the optimal structure of the 3' component of the minus-strand promoter is the wild-type 3' CSE followed a poly(A) tail of at least 11 residues. Our findings also show that insertion of nontemplated bases can restore function to an inactive promoter.  相似文献   

11.
Smith RM  Walton CM  Wu CH  Wu GY 《Journal of virology》2002,76(19):9563-9574
The 3'-terminal sequences of hepatitis C virus (HCV) positive- and negative-strand RNAs contribute cis-acting functions essential for viral replication. The secondary structure and protein-binding properties of these highly conserved regions are of interest not only for the further elucidation of HCV molecular biology, but also for the design of antisense therapeutic constructs. The RNA structure of the positive-strand 3' untranslated region has been shown previously to influence binding by various host and viral proteins and is thus thought to promote HCV RNA synthesis and genome stability. Recent studies have attributed analogous functions to the negative-strand 3' terminus. We evaluated the HCV negative-strand secondary structure by enzymatic probing with single-strand-specific RNases and thermodynamic modeling of RNA folding. The accessibility of both 3'-terminal sequences to hybridization by antisense constructs was evaluated by RNase H cleavage mapping in the presence of combinatorial oligodeoxynucleotide libraries. The mapping results facilitated identification of antisense oligodeoxynucleotides and a 10-23 deoxyribozyme active against the positive-strand 3'-X region RNA in vitro.  相似文献   

12.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

13.
The synthesis of plus and minus RNA strands of several RNA viruses requires as a first step the interaction of some viral regulatory sequences with cellular and viral proteins. The dengue 4 virus genome, a single-stranded, positive-polarity RNA, is flanked by two untranslated regions (UTR) located in the 5' and 3' ends. The 3'UTR in the minus-strand RNA [3'UTR (-)] has been thought to function as a promoter for the synthesis of plus-strand RNA. To study the initial interaction between this 3'UTR and cellular and viral proteins, mobility shift assays were performed, and four ribonucleoprotein complexes (I through IV) were formed when uninfected and infected U937 cells (human monocyte cell line) interacted with the 3'UTR (-) of dengue 4 virus. Cross-linking assays with RNAs containing the complete 3'UTR (-) (nucleotides [nt] 101 to 1) or a partial sequence from nt 101 to 45 and nt 44 to 1 resulted in specific binding of some cellular proteins. Supermobility shift and immunoprecipitation assays demonstrated that the La protein forms part of these complexes. To determine the region in the 3' UTR that interacted with the La protein, two deletion mutants were generated. The mutant (del-96), with a deletion of nt 96 to 101, was unable to interact with the La protein, suggesting that La interacted with the 5' portion of the 3'UTR (-). Complex I, which was the main ribonucleoprotein complex formed with the 3'UTR (-) and which had the fastest electrophoretic migration, contained proteins such as calreticulin and protein disulfide isomerase, which constitute important components of the endoplasmic reticulum.  相似文献   

14.
The hepatitis C virus (HCV) is a positive-strand RNA virus belonging to the Flaviviridae. Its genome carries at either end highly conserved nontranslated regions (NTRs) containing cis-acting RNA elements that are crucial for replication. In this study, we identified a novel RNA element within the NS5B coding sequence that is indispensable for replication. By using secondary structure prediction and nuclear magnetic resonance spectroscopy, we found that this RNA element, designated 5BSL3.2 by analogy to a recent report (S. You, D. D. Stump, A. D. Branch, and C. M. Rice, J. Virol. 78:1352-1366, 2004), consists of an 8-bp lower and a 6-bp upper stem, an 8-nucleotide-long bulge, and a 12-nucleotide-long upper loop. Mutational disruption of 5BSL3.2 structure blocked RNA replication, which could be restored when an intact copy of this RNA element was inserted into the 3' NTR. By using this replicon design, we mapped the elements in 5BSL3.2 that are critical for RNA replication. Most importantly, we discovered a nucleotide sequence complementarity between the upper loop of this RNA element and the loop region of stem-loop 2 in the 3' NTR. Mismatches introduced into the loops inhibited RNA replication, which could be rescued when complementarity was restored. These data provide strong evidence for a pseudoknot structure at the 3' end of the HCV genome that is essential for replication.  相似文献   

15.
Previous studies indicate that the 3' terminal 46 nt of the RNA genome of hepatitis C virus (HCV) are highly conserved among different viral strains and essential for RNA replication. Here, we describe a mutational analysis of the 3' terminal hairpin (stem-loop I) that is putatively formed by this sequence and demonstrate its role in replication of the viral RNA. We show that single base substitutions within the 6-nt loop at positions adjacent to the stem abrogate replication of a subgenomic RNA, whereas substitutions in the three apical nucleotides were well tolerated without loss of replication competence. Single point mutations were also well tolerated within the middle section of the duplex, but not at the penultimate nucleotide positions near either end of the stem. However, complementary substitutions at the -19 and -28 positions (from the 3' end) restored replication competence, providing strong evidence for the existence of the structure and its involvement in RNA replication. This was confirmed by rescue of replicating RNAs from mutants containing complementary 10-nt block substitutions at the base of the stem. Each of these RNAs contained an additional U at the 3' terminus. Further experiments indicated a strong preference for U at the 3' terminal position (followed in order by C, A, and G), and a G at the -2 position. These features of stem-loop I are likely to facilitate recognition of the 3' end of the viral RNA by the viral RNA replicase.  相似文献   

16.
17.
18.
19.
20.
The 3' terminus of TYMV RNA, which possesses tRNA-like properties, has been studied. A 3' terminal fragment of 112 nucleotides was obtained by cleavage with RNase H after hybridization of a synthetic oligodeoxynucleotide to the viral RNA. The accessibility of cytidine and adenosine residues was probed with chemical modification. Enzymatic digestion studies were performed with RNase T1, nuclease S1 and the double-strand specific RNase from the venom of the cobra Naja naja oxiana. A model is proposed for the secondary structure of the 3' terminal region of TYMV RNA comprising 86 nucleotides. The main feature of this secondary structure is the absence of a conventional acceptor stem as present in canonical tRNA. However, the terminal 42 nucleotides can be folded in a tertiary structure which bears strong resemblance with the acceptor arm of canonical tRNA. Comparison of this region of TYMV RNA with that of other RNAs from both the tymovirus group and the tobamovirus group gives support to our proposal for such a three-dimensional arrangement. The consequences for the recognition by TYMV RNA of tRNA-specific enzymes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号