首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirudo medicinalis, the medicinal leech, usually carries in its digestive tract a pure culture of Aeromonas veronii bv. sobria. Such specificity is unusual for digestive tracts that are normally colonized by a complex microbial consortium. Important questions for the symbiotic interaction and for the medical application after microvascular surgery are whether other bacteria can proliferate or at least persist in the digestive tract of H. medicinalis and what factors contribute to the reported specificity. Using a colonization assay, we were able to compare experimentally the ability of clinical isolates and of a symbiotic strain to colonize H. medicinalis. The symbiotic A. veronii bv. sobria strain proliferated well and persisted for at least 7 days inside the digestive tract. In contrast, the proliferation of Pseudomonas aeruginosa and Staphylococcus aureus was inhibited inside the animal compared to growth in the in vitro control, indicating that the ingested blood was modified within the digestive tract. However, both strains were able to persist in the digestive tract for at least 7 days. For an Escherichia coli strain, the viable counts decreased approximately 1,000-fold within 42 h. The decrease of viable E. coli could be prevented by interfering with the activation of the membrane-attack complex of the complement system that is present in blood. This suggests that the membrane-attack complex remained active inside H. medicinalis and prevented the proliferation of sensitive bacteria. Thus, antimicrobial properties of the ingested vertebrate blood contribute to the specificity of the A. veronii-H. medicinalis symbiosis, in addition to modifications of the blood inside the digestive tract of H. medicinalis.  相似文献   

2.
We used light microscopy to elucidate the morphological features of argyrophilic cells in the digestive tract of the African ostrich (Struthio camelus). The results indicated that argyrophilic cells were found to be distributed among the epithelial cells of the mucosa or glands throughout the digestive tract, except for the esophagus; two types of argyrophilic cells were found; i.e., closed-type cells and cells with triangular or elongated shapes and with their apical cytoplasmic process in contact with the lumen (open-type cells); the greatest number of argyrophilic cells was found in the proventriculus, and the argyrophilic cell density gradually decreased from the proventriculus to the rectum; Furthermore, the number of argyrophilic cells in the duodenum and ileum was higher than that in the jejunum. This text still combined the characteristics that the argyrophilic cells in digestive tract of ostrich maybe related to different digestive function of different region and the basis of their morphology to carry on a discussion. It was speculated that argyrophilic cells in the digestive tract may have both endocrine and exocrine functions.  相似文献   

3.
The survival and the physiology of lactococcal cells in the different compartments of the digestive tracts of rats were studied in order to know better the fate of ingested lactic acid bacteria after oral administration. For this purpose, we used strains marked with reporter genes, the luxA-luxB gene of Vibrio harveyi and the gfp gene of Aequora victoria, that allowed us to differentiate the inoculated bacteria from food and the other intestinal bacteria. Luciferase was chosen to measure the metabolic activity of Lactococcus lactis in the digestive tract because it requires NADH, which is available only in metabolically active cells. The green fluorescent protein was used to assess the bacterial lysis independently of death. We report not only that specific factors affect the cell viability and integrity in some digestive tract compartments but also that the way bacteria are administrated has a dramatic impact. Lactococci which transit with the diet are quite resistant to gastric acidity (90 to 98% survival). In contrast, only 10 to 30% of bacteria survive in the duodenum. Viable cells are metabolically active in each compartment of the digestive tract, whereas most dead cells appear to be subject to rapid lysis. This property suggests that lactococci could be used as a vector to deliver specifically into the duodenum the proteins produced in the cytoplasm. This type of delivery vector would be particularly appropriate for targeting digestive enzymes such as lipase to treat pancreatic deficiencies.  相似文献   

4.
Uropathogenic Escherichia coli (UPEC) strains live as commensals in the digestive tract of the host, but they can also initiate urinary tract infections. The aim of this work was to determine how a host detects the presence of a new UPEC strain in the digestive tract. Mice were orally challenged with UPEC strains 536 and CFT073, non-pathogenic strain K12 MG1655, and ΔPAI-536, an isogenic mutant of strain 536 lacking all 7 pathogenicity islands whose virulence is drastically attenuated. Intestinal colonization was measured, and cytokine expression was determined in various organs recovered from mice after oral challenge. UPEC strain 536 efficiently colonized the mouse digestive tract, and prior Enterobacteriaceae colonization was found to impact strain 536 colonization efficiency. An innate immune response, detected as the production of TNFα, IL-6 and IL-10 cytokines, was activated in the ileum 48 hours after oral challenge with strain 536, and returned to baseline within 8 days, without a drop in fecal pathogen load. Although inflammation was detected in the ileum, histology was normal at the time of cytokine peak. Comparison of cytokine secretion 48h after oral gavage with E. coli strain 536, CFT073, MG1655 or ΔPAI-536 showed that inflammation was more pronounced with UPECs than with non-pathogenic or attenuated strains. Pathogenicity islands also seemed to be involved in host detection, as IL-6 intestinal secretion was increased after administration of E. coli strain 536, but not after administration of ΔPAI-536. In conclusion, UPEC colonization of the mouse digestive tract activates acute phase inflammatory cytokine secretion but does not trigger any pathological changes, illustrating the opportunistic nature of UPECs. This digestive tract colonization model will be useful for studying the factors controlling the switch from commensalism to pathogenicity.  相似文献   

5.
为探讨禁食和重喂食对栖息于横断山地区大绒鼠(Eothenomys miletus)消化道形态的影响,对禁食和重喂食条件下大绒鼠消化道各项指标进行了测定.实验分别测定了大绒鼠禁食12h、24 h、36 h和重喂食12 h、48 h、7d后的总消化道、胃、小肠、大肠、盲肠的长度及其含内容物重、去内容物重、干重.结果表明:禁食后,总消化道含内容物重、胃含内容物重和胃去内容物重增加,重喂食7d后均恢复到对照组水平.小肠含内容物重在禁食12h时最大,在重喂食12h时最小,重喂食48 h后恢复到对照组水平.禁食和重喂食条件下,大绒鼠的大肠和盲肠各指标均没有显著变化.以上结果表明,大绒鼠在食物受到限制、饥饿等胁迫因子作用下,可能通过调节消化道形态来满足部分能量需求,维持正常的生理机能.大绒鼠的消化道在禁食和重喂食中表现出的变化模式,可能与其食物资源时常波动的野外生存环境有关,从一方面反映了该物种在食物胁迫下的生存机制和适应对策.  相似文献   

6.
Feral pigs have long been implicated as potential vectors in the spread of the devastating plant pathogen Phytophthora cinnamomi due to their rooting and wallowing activities which may predispose them as vectors of infested soil. In this study, we aim to determine whether feral pigs have the potential to act as vectors of plant pathogens such as P. cinnamomi through their feeding activity. The typically omnivorous diet of feral pigs may also lead to the passage of P. cinnamomi infected plant material through their digestive system. This study investigates the potential for feral pigs to pass viable P. cinnamomi in their faeces following the ingestion of millet seeds, pine plugs and Banksia leptophilia roots inoculated with P. cinnamomi. Recovery rates of P. cinnamomi from the millet seeds, pine plugs and B. leptophilia roots following a single ingested bolus were 33.2, 94.9 and 10.4 %, respectively supported by quantitative PCR analysis. These results demonstrate that P. cinnamomi remain viable within infected plant material following passage through the pig digestive tract, although the digestive processes reduce the pathogen’s viability. An inverse relationship was observed between the viability of infected material and passage time, suggesting that partially digested plant material provides protection for P. cinnamomi against the adverse environmental conditions of the pig digestive tract. Phytophthora cinnamomi remained viable for up to 7 days in larger pieces of colonised woody plant material such as the pine plugs. A plant infection trial using passaged P. cinnamomi colonised pine plugs showed that even material that remained in the digestive tract for 7 days was capable of infecting and killing healthy plants, susceptible to P. cinnamomi. This study provides compelling evidence that feral pigs have the ability to transport viable P. cinnamomi in their digestive tract.  相似文献   

7.
采用卵白素-生物素-过氧化物酶复合物(avidin-biotin-peroxidase complex technique,ABC)免疫组织化学方法对花背蟾蜍(Bufo raddei)消化道5-羟色胺(5-HT)细胞的分布密度及形态学特征进行了观察。结果显示,5-HT细胞在花背蟾蜍整个消化道中均有分布,食管、贲门、胃体和幽门的分布密度都显著高于肠道各段,胃幽门部密度最高,胃体部其次,直肠部最低。消化道各个部位5-HT开放型和闭合型细胞的比值变化范围为2.48~4.71。消化道各段均以开放型细胞为主,大多呈锥体形、梭形或不规则形,少数为闭合型细胞,呈圆形或椭圆形。花背蟾蜍5-HT细胞的形态学特征与其他两栖动物相似,但分布密度有自身特征,可能与其食性和善于摄取活动性小的食物的生活习性有关。  相似文献   

8.
An innovative “biodrug” concept based on oral administration of living recombinant microorganisms as a vehicle to deliver active compounds directly into the digestive tract has recently been developed. To validate this concept, we studied a recombinant Saccharomyces cerevisiae strain in order to investigate its viability and its ability to produce a protein (glutathione-S-transferase (GST)-V5H6) in the rat. Following oral administration, the recombinant yeast showed a survival rate of around 40% in the upper parts of the digestive tract, but was more sensitive to the conditions in the large intestinal, where viability dropped to 1%. Western blot analysis was able to detect the model protein throughout the digestive tract, including stomach, duodenum, jejunum (proximal, median and distal), ileum, cecum and colon. The gastrointestinal sac technique was employed to quantify GST-V5H6 in all the digestive compartments. These results suggest that S. cerevisiae may represent a useful host for producing compounds of interest directly in the digestive tract.  相似文献   

9.
Forage availability for wild rodents varies with season. In turn, the composition of food can affect morphometric parameters of the digestive tract. This study was performed in Eurasian beavers (Castor fiber) whose population was close to extinction in most Eurasian countries, but has now increased. Due to the previous low number of studies, information about the effect of forage availability on the digestive tract morphology has previously been lacking. This study was performed using beavers captured from the natural environment during three seasons of different forage availability: winter, summer and autumn. It was found that the diet of the beaver varied during the year; in winter it was dominated by woody material consisting of willow shoots, whereas in summer the diet was primarily herbs, grass and leaves. Season also affected the mass of digested contents of the digestive tract. The digestive content increased in the caecum and colon in winter and autumn, when poor-quality food dominated the beaver’s diet. The results indicated that the digestive tract parameters of beavers varied based on the composition of available forage.  相似文献   

10.
This study is considered the first report on the digestive tract pH of the pygmy octopus (Paroctopus digueti). Adult octopuses obtained from the wild (mean ± SD) (42.1 ± 15.1 g), and those acclimated to captivity in a fed (25.4 ± 9.0 g, n = 15) or fasted (23.1 ± 6.1 g, n = 15) state, were studied. The digestive tract regions of buccal mass (BMA), anterior salivary glands (ASG), posterior salivary glands (PSG), crop (CRO), stomach (STO), caecum (CAE), digestive gland (DGL) and intestine (INT) were dissected. The pH of the internal part of the digestive tract regions was measured. Food intake (dry weight) per octopus was 53.8 ± 35.1 mg to 214.9 ± 157.6 mg at 15 min and 8 h, respectively. The apparent food transit time was approximately 8 h for the appearance of feces in the posterior intestine. In all cases, the pH of the digestive tract regions was lower than pH 7.0. No statistical difference was found when comparing the pH by digestive tract regions between wild octopuses and octopuses in captivity (fasting and feeding). In acclimatized octopuses, the average pH was 6.41 ± 0.22 and 6.41 ± 0.23 for fasting and fed octopuses, respectively. Although DGL had the lowest pH values relative to other digestive tract tissues (p < 0.05), pH was always >5.0 (6.04 ± 0.12 in the wild and 5.97 ± 0.17 in feeding octopuses). In conclusion, the pygmy octopus has an acidic pH in its digestive tract under fasting and feeding conditions.  相似文献   

11.
In order to assess the role of the microbiocenosis of the digestive tract of herbivorous birds in transforming poor forage, the activity of cellulolytic enzymes in all departments of the gastrointestinal tract of the black grouse (Lyrurus tetrix) and Western capercaillie (Tetrao urogallus) was studied. The functional diversity of microbial communities of different departments was also investigated. In both species of birds, nitrogenase and cellobiohydrolase activities were discovered in the digestive tract, with the maximum observed in the cecum.  相似文献   

12.
应用光学显微镜观察龟足(Capitulum mitella)消化系统的形态和组织结构。龟足的消化系统包括消化腺和消化道。消化腺一对,呈长囊状,含有分泌细胞(B细胞)、吸收细胞(R细胞)、储存细胞(F细胞)和胚细胞(E细胞)4种类型细胞。消化道呈U型,由口、食道、胃、肠、直肠和肛门组成,各部分的结构由内到外可分为黏膜层、黏膜下层、肌层和外膜4层。口器为咀嚼型,包括一片上唇、一对触须、一对大颚以及两对小颚。食道细短,具几丁质层但无基膜,管壁向腔内突起形成明显的纵褶突;食道前段的环肌特别发达,同时独有放射肌。胃略呈球袋状,肠较长;胃和肠的组织结构相似,没有几丁质层,上皮细胞都有发达的微绒毛。直肠细长,外膜分布有16组纵肌;直肠前段的组织结构与胃、肠相似,而直肠后段有几丁质层覆盖,黏膜层、黏膜下层、肌层和外膜渐退化,16组纵肌渐发达。肛门16组更加发达的纵肌挤入上皮细胞下方,在外膜外另出现一层明显的环肌。龟足消化道各部分的组织结构差异明显,反映了它们功能的差异。  相似文献   

13.
14.
Distribution and morphological peculiarities of nitroxidergic elements throughout the entire length of digestive tract was studied for the first time in gastropod molluscs Littorina littorea (Prosobranchia) and Achatina fulica (Pulmonata) using histochemical detection of NADPH-diaphorase (NADPHd). NO-ergic cells and fibers were revealed in all parts of the mollusc digestive system beginning from esophagus. Intensive NADPHd activity is found in a great number of intraepithelial cells of the open type and their processes in the intraand subepithelial nerve plexuses, subepithelial neurons, granular connective tissue cells, and multiple nervous fibers distributed among muscular elements of digestive tract as well as those in nerves innervating the tract. NADPHd was also revealed in receptor cells in the oral area and in the A. fulica CNS ganglia innervating the digestive tract. A. fulica has a more complicated organization of A. fulica nitroxidergic system of the digestive tract. A system of glomerular structures formed by thin NADPHd-positive neural fibers coming from epithelium is found directly beneath the epithelium in esophagus, stomach, and midgut of the mollusc. More superficially under the main groups of muscular elements there are revealed small clusters of NADPHd-positive neurons that can be classified as primitive, non-structured microganglia. The distribution pattern and a possible functional role of nitroxidergic elements in digestive tract of molluscs as compared with other invertebrate and vertebrate animals are discussed.  相似文献   

15.
Regulation of the Bone Morphogenetic Protein (BMP) signaling pathway is essential for the normal development of vertebrate gastrointestinal (GI) tract, but also for the differentiation of the digestive mesenchymal layer into smooth muscles and submucosal layer. Different studies demonstrated that Bapx1 (for bagpipe homeobox homolog 1) negatively regulates the BMP pathway, but its precise expression pattern during the development and the differentiation of the GI tract mesenchyme actually remains to be examined. Here, we present the spatio-temporal expression profile of Bapx1 in the chick GI tract. We show that Bapx1 is first expressed in the undifferentiated mesenchyme of the gizzard and the colon. After the differentiation of the digestive mesenchyme, we found Bapx1 strongly expressed in the gizzard smooth muscle and in the submucosa layer of the colon. This expression pattern provides new insights into the roles of Bapx1 during the regionalization of the GI tract and the differentiation of the digestive mesenchyme of the colon and the stomach.  相似文献   

16.
Regulation of the Bone Morphogenetic Protein (BMP) signaling pathway is essential for the normal development of vertebrate gastrointestinal (GI) tract, but also for the differentiation of the digestive mesenchymal layer into smooth muscles and submucosal layer. Different studies demonstrated that Bapx1 (for bagpipe homeobox homolog 1) negatively regulates the BMP pathway, but its precise expression pattern during the development and the differentiation of the GI tract mesenchyme actually remains to be examined. Here, we present the spatio-temporal expression profile of Bapx1 in the chick GI tract. We show that Bapx1 is first expressed in the undifferentiated mesenchyme of the gizzard and the colon. After the differentiation of the digestive mesenchyme, we found Bapx1 strongly expressed in the gizzard smooth muscle and in the submucosa layer of the colon. This expression pattern provides new insights into the roles of Bapx1 during the regionalization of the GI tract and the differentiation of the digestive mesenchyme of the colon and the stomach.  相似文献   

17.
The digestive tract of Fasciola gigantica is composed of the oral sucker, buccal tube, pharynx, esophagus, and caecum. The tegumental-type epithelium lines the first four parts of the digestive tract while the caecal-type epithelium lines the remaining parts from the caecal bifurcation. The caecal-epithelial cells are classified into 3 types according to their staining properties and ultrastructural characteristics, as related to the amount of food contents in the caecal lumen. All caecal-type epithelial cells synthesize and secrete cathepsin L, a major group of enzymes in the digestive tract, as detected by in situ hybridization and immunolocalization. Moreover, the secreted cathepsin L is also adsorbed on the outer surface of the tegument and the glycocalyx coating of the surface of the tegument, whereas the tegumental cells and tegumental syncytium covering the parasite’s body and lining the proximal part of the digestive tract exhibit no in situ hybridization signal and immunostaining for cathepsin L.  相似文献   

18.
Histological method was used to describe the development of the digestive tract in Atractosteus tristoechus larvae reared under culture conditions. The larvae were kept at 28 ± 1 °C in three 15 L circular tanks for 18 days and they were fed with Artemia. According to the structural changes in the digestive system, three significant stages were established: (1) lecithotrophic, (2) lecithoexotrophic and (3) exotrophic. The first stage spanned from hatching to 3 days after hatching (DAH), the digestive system started to differentiate and larvae depended entirely on the endogenous nutrition from the yolk sac. During second stage (4–10 DAH), considered critical since it is the transition period to exotrophic feeding, the digestive tract was fully differentiated into buccopharynx, esophagus, non-glandular and glandular stomach, anterior and posterior intestine. First periodic Schiff reagent-positive goblet cells also appeared, interdispersed within the epithelium of the digestive tract, increasing substantially in numbers and distribution as development continued. At this early stage, gastric glands were only observed in the fundic stomach and not in the cardiac and pyloric region. Pyloric caeca, spiral valve and rectum were also clearly distinguishable in the intestine. After the onset of the exogenous feeding (11–18 DAH), the organization and differentiation of the digestive tract did not undergo any noticeable modification, only the increase in size and complexity of the structures, and it attained the four tissue layer arrangement characteristic of adult vertebrates.  相似文献   

19.
Nonuniform distribution has been revealed in the activity of the principal digestive hydrolases from the anterior to the posterior portion of the digestive tract in the burbot Lota lota (Linnaeus). It has been found that infestation with the cestode Eubothrium rugosum (Batch) leads to a decrease in the activity of proteinases and glycosidases in the mucosa of the burbot intestine. This infestation particularly strongly impacts the activity of proteolytic enzymes. The activity of the digestive enzymes of the host decreases even if the infestation rate is low.  相似文献   

20.
生活在同一地域的物种,会因强烈的资源竞争而产生生态位重叠与分离,从而实现相互共存。以神农架地区啮齿动物为研究对象,比较分析不同啮齿类食性、脏器重量及消化道形态差异,探索其共存机制及其生理生态学上的适应策略。食性上,安氏白腹鼠(Niviventer andersoni)、社鼠(N.confucianus)、高山姬鼠(Apodemus chevrieri)、中华姬鼠(A.draco)均为杂食者,但各自喜食偏好不同,安氏白腹鼠的食物组成以植物枝叶和种子为主,社鼠、高山姬鼠和中华姬鼠的食物组成均以种子和动物性食物为主。与各自生态习性及其食性相适应,不同啮齿动物的脏器重量及消化道形态发生相应的变化。脏器重量上,不同啮齿动物心鲜重、肺鲜重、脾鲜重和干重无显著差异,其它指标差异显著。安氏白腹鼠的心干重、肺干重、肝鲜重和干重、肾鲜重和干重显著大于社鼠、高山姬鼠和中华姬鼠。消化道形态上,不同啮齿动物盲肠长、净鲜重和干重无显著差异,其它指标差异显著。其中,胃含内容物鲜重、净鲜重和干重,盲肠含内容物鲜重,大肠长、含内容物鲜重、净鲜重和干重均以安氏白腹鼠具较大值,但各自变化趋势不同;小肠长、含内容物鲜重、净鲜重和干重则以社鼠具较大值。且同属姬鼠属的高山姬鼠和中华姬鼠脏器重量及消化道形态各指标间均无显著差异。由于小泡巨鼠和猪尾鼠数量较少,未进行统计分析。以上结果显示:食物资源利用上的分化有利于安氏白腹鼠与其近缘物种社鼠及其他鼠类的同域共存,且为适应不同的食物资源利用模式,其脏器及消化道形态也发生了适应性的变化;同域分布的近缘物种高山姬鼠、中华姬鼠则有可能采取其它策略而非食物资源分化模式实现共存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号