首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stomatal oscillations are cyclic opening and closing of stomata, presumed to initiate from hydraulic mismatch between leaf water supply and transpiration rate. To test this assumption, mismatches between water supply and transpiration were induced using manipulations of vapour pressure deficit (VPD) and light spectrum in banana (Musa acuminata). Simultaneous measurements of gas exchange with changes in leaf turgor pressure were used to describe the hydraulic mismatches. An increase of VPD above a certain threshold caused stomatal oscillations with variable amplitudes. Oscillations in leaf turgor pressure were synchronized with stomatal oscillations and balanced only when transpiration equaled water supply. Surprisingly, changing the light spectrum from red and blue to red alone at constant VPD also induced stomatal oscillations – while the addition of blue (10%) to red light only ended oscillations. Blue light is known to induce stomatal opening and thus should increase the hydraulic mismatch, reduce the VPD threshold for oscillations and increase the oscillation amplitude. Unexpectedly, blue light reduced oscillation amplitude, increased VPD threshold and reduced turgor pressure loss. These results suggest that additionally, to the known effect of blue light on the hydroactive opening response of stomata, it can also effect stomatal movement by increased xylem–epidermis water supply.  相似文献   

2.
Interactions among stomata in response to perturbations in humidity   总被引:4,自引:2,他引:2  
The existence of patchy stomatal closure suggests interactions among neighbouring stomata that synchronize stomatal movements in small areas of a leaf. To test for such interactions, water vapour partial pressure (ewv) for a small group of stomata was controlled independently of that for the surrounding stomata using gas flow from a small needle. The ewv for the surrounding stomata was controlled with a larger gas flow, termed the primary flow. The spatial pattern of ewv isobars caused by the needle flow was assessed experimentally and theoretically. Stomatal apertures were monitored following perturbations in ewv of the primary flow and the needle flow. When ewv of the primary flow was perturbed and that of the needle flow held constant, stomata for which there was little or no perturbation in ewv responded similarly to stomata experiencing the perturbation. When the ewv of the needle flow was perturbed and that of the primary flow held constant, many stomata experiencing little or no perturbation responded similarly to those experiencing a large perturbation. The results are discussed in relation to a mechanism for stomatal interactions that has been proposed in a previous study [Haefner, Buckley & Mott (1997) Plant, Cell and Environment 20, 1087–1097, this issue].  相似文献   

3.
Fluorescence and thermal imaging were used to examine the dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves following a decrease in ambient humidity. Patches were not observed in all experiments, and in many experiments the patches were short-lived. In some experiments, however, patches persisted for many hours and showed complex temporal and spatial patterns. Rapidly sampled fluorescence images showed that the measurable variations of these patches were sufficiently slow to be captured by fluorescence images taken at 3-min intervals using a saturating flash of light. Stomatal patchiness with saturating flashes of light was not demonstrably different from that without saturating flashes of light, suggesting that the regular flashes of light did not directly cause the phenomenon. Comparison of simultaneous fluorescence and thermal images showed that the fluorescence patterns were largely the result of stomatal conductance patterns, and both thermal and fluorescence images showed patches of stomatal conductance that propagated coherently across the leaf surface. These nondispersing patches often crossed a given region of the leaf repeatedly at regular intervals, resulting in oscillations in stomatal conductance for that region. The existence of these coherently propagating structures has implications for the mechanisms that cause patchy stomatal behaviour as well as for the physiological ramifications of this phenomenon.  相似文献   

4.
气孔是植物叶片内外气体交换的场所。斑驳气孔在形态结构、动态变化、光合气体交换机制等方面都与常见的普通气孔不同,是植物体响应环境变化而形戍的特殊气孔形式。本文介绍了斑驳气孔的特点及其形成机理。  相似文献   

5.
Evidence is building that stomatal conductance to water vapour (g(s)) can be quite high in the dark in some species. However, it is unclear whether nocturnal opening reflects a mechanistic limitation (i.e. an inability to close at night) or an adaptive response (i.e. promoting water loss for reasons unrelated to carbon gain). Further, it is unclear if stomatal responses to leaf-air vapour pressure difference (D) persist in the dark. We investigated nocturnal stomatal behaviour in castor bean (Ricinus communis L.) by measuring gas exchange and stomatal responses to D in the light and in the dark. Results were compared among eight growth environments [two levels for each of three treatment variables: air saturation deficit (D(a)), light and water availability]. In most plants, stomata remained open and sensitive to D at night. g(s) was typically lower at night than in the day, whereas leaf osmotic pressure (Pi) was higher at night. In well-watered plants grown at low D(a), stomata were less sensitive to D in the dark than in the light, but the reverse was found for plants grown at high D(a). Stomata of droughted plants were less sensitive to D in the dark than in the light regardless of growth D(a). Drought also reduced g(s) and elevated Pi in both the light and the dark, but had variable effects on stomatal sensitivity to D. These results are interpreted with the aid of models of stomatal conductance.  相似文献   

6.
We examined the stomatal response to leaf excision in an evergreen woody shrub, Photinia x fraseri, using a novel combination of gas exchange, traditional water relations and modelling. Plants were kept outdoors in mild winter conditions (average daily temperature range: -1 to 12 degrees C) before being transferred to a glasshouse (temperature range: 20-30 degrees C) and allowed to acclimate for different periods before experiments. 'Glasshouse plants' were acclimated for at least 9 d, and 'outdoor plants' were acclimated for fewer than 3 d before laboratory gas exchange experiments. The transient stomatal opening response to leaf excision was roughly twice as long in outdoor plants as in glasshouse plants. To elucidate the reason for this difference, we inferred variables of stomatal water relations (epidermal and guard cell turgor pressures and guard cell osmotic pressure: Pe, Pg and pi g, respectively) from stomatal conductance (gs) and bulk leaf water potential (psi l), using a hydromechanical model of gs. psi l was calculated from cumulative post-excision transpirational water loss using empirical relationships between psi l and relative water content obtained on similar leaves. Inferred Pg and Pe both declined immediately after leaf excision. Inferred pi g also declined after a lag period. The kinetics of pi g adjustment after the lag were similar in outdoors and glasshouse plants, but the lag period was much longer in outdoor plants. This suggests that the longer transient opening response in outdoor plants resulted from slower induction, not slower execution, of guard cell osmoregulation. We discuss the implications of our results for the mechanism of short-term stomatal responses to hydraulic perturbations, for dynamic modelling of gs and for leaf water status regulation.  相似文献   

7.
A reinterpretation of stomatal responses to humidity   总被引:20,自引:3,他引:17  
The stomatal conductance (g) for single leaves and the equivalent canopy conductance for stands of vegetation are often represented in models as empirical functions of saturation vapour pressure deficit or relative humidity. The mechanistic basis of this dependence is very weak. A reanalysis of 52 sets of measurements on 16 species supports the conclusion of Mott & Parkhurst (1991, Plant, Cell and Environment 14, 509–515) that stomata respond to the rate of transpiration (E) rather than to humidity per se. In general, ?g/?E is negative and constant so that the relation between g and E can be defined by two parameters: a maximum conductance gm obtained by extrapolation to zero transpiration, and a maximum rate of transpiration Em obtained by extrapolation to zero conductance. Both parameters are shown to be functions of temperature, CO2 concentration, and soil water content. Exceptionally, transpiration rate and conductance may decrease together in very dry air, possibly because of patchy closure of stomata.  相似文献   

8.
A spatially explicit model of patchy stomatal responses to humidity   总被引:8,自引:3,他引:5  
Stomata of leaves can exhibit either temporally stable, spatially homogeneous behaviour or complex spatial and temporal dynamics, depending on environmental and physiological conditions. To test the ability of accepted physiological mechanisms to describe these patterns, we developed a simple, spatially explicit model of stomatal responses to humidity that incorporated hydraulic interactions among stomata. Model results showed qualitative agreement with experimental evidence for a number of phenomena: (1) at high humidities, whole-leaf steady-state conductance is a monotonic function of humidity; (2) the initial stomatal response following a perturbation in humidity is in the direction opposite to the final response, and (3) spatial dynamics include patch formation and self-organization similar to that observed in actual leaves. These comparisons do not eliminate other explanations, but do suggest that novel mechanisms need not be invoked to explain the diversity of spatial and temporal patterns of stomatal behaviour in leaves.  相似文献   

9.
The Neotropical Bromeliaceae display an extraordinary level of ecological variety, with species differing widely in habit, photosynthetic pathway and growth form. Divergences in stomatal structure and function, hitherto understudied in treatments of bromeliad evolutionary physiology, could have been critical to the generation of variety in ecophysiological strategies among the bromeliads. Because humidity is a key factor in bromeliad niches, we focussed on stomatal responses to vapour pressure deficit (VPD). We measured the sensitivity of stomatal conductance and assimilation rate to VPD in eight C3 bromeliad species of contrasting growth forms and ecophysiological strategies and parameterised the kinetics of stomatal responses to a step change in VPD. Notably, three tank‐epiphyte species displayed low conductance, high sensitivity and fast kinetics relative to the lithophytes, while three xeromorphic terrestrial species showed high conductance and sensitivity but slow stomatal kinetics. An apparent feedforward response of transpiration to VPD occurred in the tank epiphytes, while water‐use efficiency was differentially impacted by stomatal closure depending on photosynthetic responses. Differences in stomatal responses to VPD between species of different ecophysiological strategies are closely linked to modifications of stomatal morphology, which we argue has been a pivotal component of the evolution of high diversity in this important plant family.  相似文献   

10.
The quantitative relation between stomatal aperture and gas exchange through the stomatal pore can be described by physical models derived from Fick's first law of diffusion. Such models, usually based on a simplified pore geometry, are used to calculate leaf conductance from stomatal pore dimensions or vice versa. In this study a combination of gas-exchange measurements and simultaneous microscopical observations of stomatal apertures was used to empirically determine this relationship. The results show a substantial deviation between measured stomatal conductance and that calculated from the simplified models. The main difference is a much steeper increase of conductance with aperture at small apertures. When the calculation was based on a realistic pore geometry derived from confocal laser scanning microscopy, a good fit to the experimentally found relationship could be obtained if additionally a significant contribution of a mesophyll diffusional resistance was taken into account.  相似文献   

11.
Stomatal responses to humidity in isolated epidermes   总被引:1,自引:0,他引:1  
The ability of guard cells to hydrate and dehydrate from the surrounding air was investigated using isolated epidermes of Tradescantia pallida and Vicia faba . Stomata were found to respond to the water vapour pressure on the outside and inside of the epidermis, but the response was more sensitive to the inside vapour pressure, and occurred in the presence or absence of living, turgid epidermal cells. Experiments using helium–oxygen air showed that guard cells hydrated and dehydrated entirely from water vapour, suggesting that there was no significant transfer of water from the epidermal tissue to the guard cells. The stomatal aperture achieved at any given vapour pressure was shown to be consistent with water potential equilibrium between the guard cells and the air near the bottom of the stomatal pore, and water vapour exchange through the external cuticle appeared to be unimportant for the responses. Although stomatal responses to humidity in isolated epidermes are the result of water potential equilibrium between the guard cells and the air near the bottom of the stomatal pore, stomatal responses to humidity in leaves are unlikely to be the result of a similar equilibrium.  相似文献   

12.
Images of chlorophyll fluorescence were used to demonstrate patchy stomatal closure at low humidities in leaves of well-watered Xanthium strumarium plants. The pattern and extent of patchy stomatal closure were shown to be different for the two surfaces of amphistomatous leaves by taking images of leaves with CO2 available to only one leaf was exposed to low humidity, patchiness was more extensive on that surface. Gas-exchange experiments were also conducted to determine the apparent photosynthetic capacity of the mesophyll (photosynthesis rate at constant ci when it was supplied with CO2 through both surfaces or through each surface alone. These experiments showed declines in the apparent photosynthetic capacity of the mesophyll at low humidities that were consistent with patchy stomatal closure on one or both surfaces. The results suggest that patchy stomatal closure can be a factor in the steady-state reponses of stomata to humidity. In amphistomatous leaves this is further complicated by the fact that patches on one epidermis may not coincide with those of the other surface.  相似文献   

13.
14.
15.
The role of peristomatal transpiration in the mechanism of stomatal movement   总被引:12,自引:4,他引:8  
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion.  相似文献   

16.
The magnitude of the response of stomatal conductance to a change in the concentration of carbon dioxide external to the leaf from 350 to 700 cm3 m–3 was found to be extremely variable from day to day in the field in Glycine max , Hordeum vulgare and Triticum aestivum . It was found that the leaf-to-air water vapour pressure difference (LAVPD) during the midday measurements of the stomatal response to carbon dioxide affected the magnitude of the response. On days when LAVPD was low, no significant change in conductance occurred with the increase in carbon dioxide concentration. When LAVPD was higher, conductance decreased by 24–52% with the increase in carbon dioxide within a few minutes. The sensitivity of conductance was approximately linearly related to LAVPD in wheat and barley. Experiments with G. max in the field indicated that, on days with low LAVPD, increasing the LAVPD just around the measured portion of a leaflet made stomatal conductance responsive to increased carbon dioxide. This result was also obtained under laboratory conditions with G. max , Helianthus annuus and Amaranthus retroflexus . In G. max , it was determined that leaves in which conductance was not responsive to the increase in carbon dioxide could be made responsive even at low LAVPD by the injection of abscisic acid into their petioles. Because it is known that abscisic acid sensitizes stomata to carbon dioxide, these results are consistent with the idea that abscisic acid may be involved in the response of stomatal conductance to changes in LAVPD.  相似文献   

17.
Reduced stomatal conductance (gs) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root‐derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor‐mediated and leaf turgor‐independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process‐based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63–84% across species, and the model reproduced these changes well (r2 = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA‐centric model of stomatal responses to drought.  相似文献   

18.
The role of calcium in turgor regulation in Chara longifolia   总被引:2,自引:2,他引:0  
The salt-tolerant alga Chara longifolia (Robinson) is capable of regulating its turgor in response to hypotonic stress resulting from a decrease in the osmotic pressure of the medium. This regulatory process takes only 40 min in small cells (length ≤ 10 mm), but requires 3d in large cells (length ≥30mm). Turgor regulation in small cells is comprised of two phases, a fast phase reducing the increased turgor by about 25% in the First 5 min, and a second phase reducing the turgor to near the original value within 40 min. The second phase is inhibited by reducing the concentration of Ca2+ in the external medium from 4.6 to 0.01 mol m?3; the first phase is less affected by the reduction of Ca2+. In the first 5 min of stress, the membrane depolarizes in a voltage-dependent fashion, electrical conductance of the membrane increases transiently and cytoplasmic streaming is inhibited. When the external Ca2+ concentration is lowered, conductance does not increase and streaming continues unaffected. In a low ionic strength medium, Ca2+ is not required in the medium for turgor regulation. To test the hypothesis that there is increased Ca2+ entry from the medium during turgor regulation, we measured the influx of 45Ca2+ into the cell. We found an increased influx of Ca2+, from 18 to 36 nmol m?2 s?1 during the first 30 to 90 s following osmotic stress. This increase was evident only in cells below about 7 mm in length, and was more marked in smaller cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号