首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contraceptive microbicides formulated as vaginal gels offer the possibility of women-controlled contraception and prevention of HIV infection. The effects of these gels on the upper reproductive tract are largely unknown. The purpose of this study was to determine whether nonoxynol-9 (N-9) induces apoptosis in human endometrium using endometrial explant as a model. Apoptosis was determined by gel electrophoresis for the detection of DNA fragmentation and by immunohistochemistry using the M30 CytoDEATH and anti-cleaved caspase-3 (CASP3) antibodies for the detection of caspase activity. The ability of the broad-spectrum caspase inhibitor and CASP3-specific inhibitor to prevent N-9-induced cell death was measured. Expression of apoptosis-related genes such as BCL2, BAX, Fas receptor (FAS), and Fas ligand (FASLG) was quantified using real-time polymerase chain reaction (PCR) analysis. This study demonstrated that N-9 induced DNA fragmentation and caspase activity in endometrial explants in a dose- and time-dependent manner. Caspase inhibitors did not fully prevent the N-9-induced DNA fragmentation. Real-time PCR analysis revealed that FAS and FASLG were largely increased following N-9 treatment. Together, these results suggested that apoptosis triggered by N-9 in endometrial explants is mediated upstream via FAS and FASLG, followed by CASP3 activation leading to final cell death. It appears that other factors besides caspases are also involved in the N-9-induced apoptosis.  相似文献   

2.
A fraction of attenuated Leishmanial lipid (ALL) rich in sphingolipids, previously shown to have apoptosis inducing activity in mouse melanoma (B16F10) and human melanoma (A375) cells, was resolved to isolate the bioactive sphingolipid. The mechanism of apoptosis induction by this bioactive attenuated Leishmanial sphingolipid (ALSL) was studied in A375 cells. Apoptosis induced by ALSL in A375 cells was found to be dose and time-dependent. Exposure of cells to ALSL resulted in a rapid increase in reactive oxygen species generation. Pretreatment of cells with the antioxidant N-acetyl-cystein reduced ROS generation and attenuated apoptosis induced by ALSL. Again, ALSL sensitization resulted in the activation of caspase-3 and -9 but not caspase-8. However, inhibitors of these caspases could not protect the cells completely from ALSL-induced apoptosis. N-acetyl-cystein pretreatment was again found to attenuate the activation of caspase-3 and -9. ALSL treatment also resulted in the alteration of mitochondrial membrane potential, and release of pro-apoptotic factors such as cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Furthermore, c-Jun N-terminal kinase was activated that resulted in apoptosis of A375 cells, whereas p38 MAPK was activated to counteract the stress generated in cells in response to ALSL treatment. Taken together, our results indicate that ALSL-induced apoptosis of A375 cells is mediated by both mitochondrial caspase-dependent and -independent pathways and it involves ROS and JNK activation in the mitogen-activated protein kinase cascade.  相似文献   

3.
Cadmium is a widely used heavy metal that causes severe damage to many organs including liver, kidney and lung. Cadmium toxicity has been described as in vitro and in vivo apoptosis but its molecular mechanisms are not fully understood. In this study, we used the human lymphoblastoid cell line Boleth to characterise cadmium-induced apoptosis further, using sub-lethal (10 microM) and lethal (IC50: 350 microM) doses. At lethal concentration, we observed features of apoptosis between 6 and 8 h after treatment: maturation of caspases 3 and 8, poly(ADP-ribose)polymerase (PARP) cleavage and DNA fragmentation. In order to determine the role of the MAPKs in this process, we investigated p38, ERK1/2 and c-Jun NH2-terminal kinases (JNK) phosphorylation: at lethal concentration, all these pathways were rapidly activated, but no decrease in the apoptotic rate was seen on inhibition of these kinases with drugs. Chemical inhibitors of caspases 3 and 8 blocked cleavage of PARP but not cell death, suggesting the existence of a caspase-independent death. We found that cadmium depolarised membrane potential in less than 1 h, as determined with DiOC6 dye. Interestingly, mitochondrial alteration led to the translocation of apoptosis-inducing factor (AIF) to the nucleus, where we observed chromatin condensation and possibly DNA fragmentation. These results suggest that cadmium-induced apoptosis can occur in the Boleth cell line through caspase-dependent and -independent pathways, independently of activation of major MAPKs.  相似文献   

4.
Apoptosis plays an important role in the pathogenesis of many viral infections. Despite this fact, the apoptotic pathways triggered during viral infections are incompletely understood. We now provide the first detailed characterization of the pattern of caspase activation following infection with a cytoplasmically replicating RNA virus. Reovirus infection of HEK293 cells results in the activation of caspase-8 followed by cleavage of the pro-apoptotic protein Bid. This initiates the activation of the mitochondrial apoptotic pathway leading to release of cytochrome c and activation of caspase-9. Combined activation of death receptor and mitochondrial pathways results in downstream activation of effector caspases including caspase-3 and caspase-7 and cleavage of cellular substrates including PARP. Apoptosis is initiated by death receptor pathways but requires mitochondrial amplification producing a biphasic pattern of caspase-8, Bid, and caspase-3 activation.  相似文献   

5.
The Ras-association domain family (RASSF) comprises six members (RASSF1-6) that each harbors a RalGDS/AF-6 (RA) and Sav/RASSF/Hippo (SARAH) domain. The RASSF proteins are known as putative tumor suppressors but RASSF6 has not yet been studied. We have here characterized human RASSF6. Although RASSF6 has RA domain, it does not bind Ki-Ras, Ha-Ras, N-Ras, M-Ras, or TC21 under the condition that Nore1 (RASSF5) binds these Ras proteins. The message of RASSF6 is detected by RT-PCR in several cell lines including HeLa, MCF-7, U373, A549, and HepG2 cells, but the protein expression is low. The enhanced expression of RASSF6 causes apoptosis in HeLa cells. RASSF6 activates Bax and induces cytochrome C release. Caspase-3 activation is also induced, but the caspase inhibitor, Z-VAD-FMK, does not block RASSF6-mediated apoptosis. Apoptosis-inducing factor and endonuclease G are released from the mitochondria upon expression of RASSF6 and their releases are not blocked by Z-VAD-FMK. The knock down of RASSF6 partially blocks tumor necrosis factor-alpha-induced cell death in HeLa cells. These findings indicate that RASSF6 is implicated in apoptosis in HeLa cells and that it triggers both caspase-dependent and caspase-independent pathways.  相似文献   

6.
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate (HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved PDT effectiveness.  相似文献   

7.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

8.
Hepatocytes can be sensitized to tumor necrosis factor (TNF)-alpha toxicity by repression of NF-kappaB activation or inhibition of RNA synthesis. To determine whether both forms of sensitization lead to TNF-alpha cytotoxicity by similar mechanisms, TNF-alpha-induced cell death in RALA255-10G hepatocytes was examined following infection with an adenovirus, Ad5IkappaB, that blocks NF-kappaB activation or following cotreatment with actinomycin D (ActD). TNF-alpha treatment of Ad5IkappaB-infected cells resulted in 44% cell death within 6 h. ActD/TNF-alpha induced no death within 6 h but did lead to 37% cell death by 24 h. In both instances, cell death occurred by apoptosis and was associated with caspase activation, although caspase activation in ActD-sensitized cells was delayed. CrmA and chemical caspase inhibitors blocked Ad5IkappaB/TNF-alpha-induced cell death but did not inhibit ActD/TNF-alpha-induced apoptosis. A Fas-associated protein with death domain (FADD) dominant negative decreased Ad5IkappaB/TNF-alpha- and ActD/TNF-alpha-induced cell death by 81 and 47%, respectively. However, downstream events differed, since Ad5IkappaB/TNF-alpha but not ActD/TNF-alpha treatment caused mitochondrial cytochrome c release. These results suggest that NF-kappaB inactivation and inhibition of RNA synthesis sensitize RALA255-10G hepatocytes to TNF-alpha toxicity through distinct cell death pathways that diverge below the level of FADD. ActD-induced hepatocyte sensitization to TNF-alpha cytotoxicity occurs through a FADD-dependent, caspase-independent pathway of apoptosis.  相似文献   

9.
Stat6-dependent and -independent pathways for IL-4 production   总被引:10,自引:0,他引:10  
Stat6 has been shown to have a crucial role in the IL-4-dependent differentiation of Th2 cells. In this report, we explore whether in vitro Th2 differentiation driven by altered costimulatory signals or Ag dose is Stat6 dependent. We find that blocking B7-1 signaling in vitro promotes the differentiation of IL-4-secreting Th2 cells in wild-type but not Stat6-deficient T cell cultures. Additionally, stimulation with peptide Ag doses that normally result in the production of Th2 cells in vitro fails to do so in cultures of Stat6-deficient cells. We also demonstrate that Stat6 is required for the in vitro differentiation of CD8+ T cells into IL-4-secreting cytotoxic T cell type 2 cells. However, IL-4 expression is not absolutely dependent on Stat6. We demonstrate that populations of T cells that do not require IL-4 for their development, such as NK T cells, are still competent to secrete IL-4 in the absence of Stat6. These results demonstrate that Stat6 is required for the differentiation program leading to the generation of Th2 and cytotoxic T cell type 2 cells but not for IL-4 expression in cells that do not undergo differentiation in response to IL-4.  相似文献   

10.
Baird SK  Hampton MB  Gieseg SP 《FEBS letters》2004,578(1-2):169-174
Monocytic cell lines have been extensively used to characterize and model various features of the atherogenic process. We found striking differences in the apoptotic pathways of U937 cells and THP-1 cells exposed to copper-oxidized LDL. While phosphatidylserine exposure occurred in both lines, caspase activation was only apparent in the THP-1 cells. OxLDL caused caspase activity to decrease below that seen in untreated U937 cells, and this corresponded with a loss in intracellular thiols. In conclusion, exposure of U937 cells to oxLDL did not trigger a conventional apoptosis response, but still resulted in phosphatidylserine externalization.  相似文献   

11.
12.
Thiazolidinediones have been shown to up-regulate adiponectin expression in white adipose tissue and plasma adiponectin levels, and these up-regulations have been proposed to be a major mechanism of the thiazolidinedione-induced amelioration of insulin resistance linked to obesity. To test this hypothesis, we generated adiponectin knock-out (adipo-/-) ob/ob mice with a C57B/6 background. After 14 days of 10 mg/kg pioglitazone, the insulin resistance and diabetes of ob/ob mice were significantly improved in association with significant up-regulation of serum adiponectin levels. Amelioration of insulin resistance in ob/ob mice was attributed to decreased glucose production and increased AMP-activated protein kinase in the liver but not to increased glucose uptake in skeletal muscle. In contrast, insulin resistance and diabetes were not improved in adipo-/-ob/ob mice. After 14 days of 30 mg/kg pioglitazone, insulin resistance and diabetes of ob/ob mice were again significantly ameliorated, which was attributed not only to decreased glucose production in the liver but also to increased glucose uptake in skeletal muscle. Interestingly, adipo-/-ob/ob mice also displayed significant amelioration of insulin resistance and diabetes, which was attributed to increased glucose uptake in skeletal muscle but not to decreased glucose production in the liver. The serum-free fatty acid and triglyceride levels as well as adipocyte sizes in ob/ob and adipo-/-ob/ob mice were unchanged after 10 mg/kg pioglitazone but were significantly reduced to a similar degree after 30 mg/kg pioglitazone. Moreover, the expressions of TNFalpha and resistin in adipose tissues of ob/ob and adipo-/-ob/ob mice were unchanged after 10 mg/kg pioglitazone but were decreased after 30 mg/kg pioglitazone. Thus, pioglitazone-induced amelioration of insulin resistance and diabetes may occur adiponectin dependently in the liver and adiponectin independently in skeletal muscle.  相似文献   

13.
Isoegomaketone (IK) is an essential oil component of Perilla frutescens (L.), but the mechanism by which IK induces apoptosis has never been studied. The purpose of this study was to elucidate the IK-induced apoptotic pathway in DLD1 human colon cancer cells. We observed that IK treatment over 24 h significantly inhibited cell viability in a dose-dependent manner. We also found that IK triggered cleavage of PARP. Moreover, IK treatment resulted in cleavage of caspase-8, -9, and -3 in a dose- and time-dependent manner. IK treatment also resulted in cleavage of Bid and translocation of Bax, and triggered the release of cytochrome c from the mitochondria to the cytoplasm. Furthermore, it resulted in the translocation of apoptosis inducing factor (AIF), a caspase-independent mitochondrial apoptosis factor, from the mitochondria into the nucleus. Overall, these results suggest that IK induces apoptosis through caspase-dependent and capase-independent pathways in DLD1 cells.  相似文献   

14.
Nitroalkene derivatives of nitro-linoleic acid (LNO2) and nitro-oleic acid (OA-NO2) are nitrated unsaturated fatty acids that can be detected in healthy human plasma, red blood cells and urine. It has been shown that nitroalkenes have potent anti-inflammatory properties in multiple disease models. In the present study, we are the first to investigate the apoptotic effects of nitroalkenes in rat aortic smooth muscle cells (RASMCs). We observed that nitroalkenes induce RASMCs apoptosis in a dose-dependent manner. In addition, nitroalkenes stimulate extrinsic caspase-8 and intrinsic caspase-9 activity to trigger the caspase-3 apoptotic signaling cascade, resulting in RASMCs death. Furthermore, the pro-apoptotic protein, Bad was upregulated and antiapoptotic protein, Bcl-xl was downregulated during nitroalkene-induced apoptosis. These results demonstrate that nitroalkenes can induce RASMCs apoptosis via stimulation of caspase activity and the regulation of apoptotic protein expression levels.  相似文献   

15.
16.
Zhu J  Huang X  Yang Y 《Journal of virology》2007,81(7):3170-3180
Recombinant adenoviral vectors have been widely used for gene therapy applications and as vaccine vehicles for treating infectious diseases such as human immunodeficiency virus disease. The innate immune response to adenoviruses represents the most significant hurdle in clinical application of adenoviral vectors for gene therapy, but it is an attractive feature for vaccine development. How adenovirus activates innate immunity remains largely unknown. Here we showed that adenovirus elicited innate immune response through the induction of high levels of type I interferons (IFNs) by both plasmacytoid dendritic cells (pDCs) and non-pDCs such as conventional DCs and macrophages. The innate immune recognition of adenovirus by pDCs was mediated by Toll-like receptor 9 (TLR9) and was dependent on MyD88, whereas that by non-pDCs was TLR independent through cytosolic sensing of adenoviral DNA. Furthermore, type I IFNs were pivotal in innate and adaptive immune responses to adenovirus in vivo, and type I IFN blockade diminished immune responses, resulting in more stable transgene expression and reduction of inflammation. These findings indicate that adenovirus activates innate immunity by its DNA through TLR-dependent and -independent pathways in a cell type-specific fashion, and they highlight a critical role for type I IFNs in innate and adaptive immune responses to adenoviral vectors. Our results that suggest strategies to interfere with type I IFN pathway may improve the outcome of adenovirus-mediated gene therapy, whereas approaches to activate the type I IFN pathway may enhance vaccine potency.  相似文献   

17.
Leptin controls body weight by activating the long form of the leptin receptor (LEPRb). Janus kinase 2 (JAK2) is associated with LEPRb and autophosphorylates in response to leptin. JAK2 also phosphorylates LEPRb, STAT3, and multiple other downstream molecules. Surprisingly, here we show that JAK2 is not required for leptin stimulation of STAT3 phosphorylation. Leptin time- and dose-dependently stimulated tyrosine phosphorylation of STAT3 in both human and mouse JAK2-null cells. Leptin also increased the viability of JAK2-null cells. Overexpression of c-Src or Fyn, two Src family members, promoted STAT3 phosphorylation, whereas inhibition of the endogenous Src family members by either pharmacological inhibitors or dominant negative Src(K298M) decreased the ability of leptin to stimulate the phosphorylation of STAT3 and ERK1/2. Leptin also stimulated tyrosine phosphorylation of kinase-inactive JAK2(K882E) in JAK2-null cells. Overexpression of JAK2(K882E) enhanced the ability of leptin to stimulate STAT3 phosphorylation in JAK2-null cells. Tyr1138 in LEPRb was required for leptin-stimulated phosphorylation of STAT3 but not JAK2(K882E). These data suggest that leptin stimulates non-JAK2 tyrosine kinase(s), including the Src family members, which phosphorylate JAK2, STAT3, and other molecules downstream of LEPRb. JAK2 mediates leptin signaling by both phosphorylating its substrates and forming a signaling complex as a scaffolding/adaptor protein. The non-JAK2 kinase(s) and JAK2 may act coordinately and synergistically to mediate leptin response.  相似文献   

18.
Newcastle disease virus (NDV), an avian paramyxovirus, is tumor selective and intrinsically oncolytic. Here, we present evidence that genetically modified, recombinant NDV strains are cytotoxic to human tumor cell lines of ecto-, endo-, and mesodermal origin. We show that cytotoxicity against tumor cells is due to multiple caspase-dependent pathways of apoptosis independent of interferon signaling competence. The signaling pathways of NDV-induced, cancer cell-selective apoptosis are not well understood. We demonstrate that NDV triggers apoptosis by activating the mitochondrial/intrinsic pathway and that it acts independently of the death receptor/extrinsic pathway. Caspase-8-methylated SH-SY5Y neuroblastoma cells are as sensitive to NDV as other caspase-8-competent cells. This demonstrates that NDV is likely to act primarily through the mitochondrial death pathway. NDV infection results in the loss of mitochondrial membrane potential and the subsequent release of the mitochondrial protein cytochrome c, but the second mitochondrion-derived activator of caspase (Smac/DIABLO) is not released. In addition, we describe early activation of caspase-9 and caspase-3. In contrast, cleavage of caspase-8, which is predominantly activated by the death receptor pathway, is a TNF-related, apoptosis-inducing ligand (TRAIL)-induced late event in NDV-mediated apoptosis of tumor cells. Our data, therefore, indicate that the death signal(s) generated by NDV in tumor cells ultimately converges at the mitochondria and that it acts independently of the death receptor pathway. Our cytotoxicity studies demonstrate that recombinant NDV could be developed as a cancer virotherapy agent, either alone or in combination with therapeutic transgenes. We have also shown that trackable oncolytic NDV could be developed without any reduction in oncolytic efficacy.  相似文献   

19.
Renal fibrosis is a common consequence and often a central feature of all the progressive renal diseases that lead to end-stage renal failure. In comparison to wound healing, during kidney fibrosis the length of the post-inflammatory phase often exceeds and continues unchecked resulting in scar formation. Infiltrating immune cells and a heterogeneous colony of interstitial cells derived from a variety of cellular origins such as resident mesenchymal cells, tubular epithelial cells, circulating fibrocytes, and bone marrow derived stem cells, communicate with each other and with inflamed and surviving parenchymal cells via a network of cytokines and adhesion molecules to populate the renal tubulointerstitial space during early fibrogenesis. Such fibroblasts subsequently secrete abundant extracellular matrix to achieve architectural remodeling in parallel with functional deterioration. Renal fibrosis is a dominant determinant of the clinical outcome of patients and yet for the most part, current therapies are ineffective or only marginally effective. This review highlights recent advances in our understanding of the cellular and molecular events leading to the progression of renal fibrosis.  相似文献   

20.
Acetogenins are cell-membrane permeable, naturally occurring secondary metabolites of plants such as Annonaceae, Lauraceae and other related phylogenic families. They belong to the chemical derivatives of polyketides, which are synthesized from fatty acid precursors. Although acetogenins have displayed diverse biological activities, the anti-proliferative effect on human cancer cells has been widely reported. Acetogenins are inhibitors of complex I in the electron transport chain therefore they interrupt ATP synthesis in mitochondria. We tested a new acetogenins-enriched extract from the seed of Persea americana in order to investigate if any toxicity was induced on cardiac tissue and determine the involved mechanism. In isolated perfused heart we found that contractility was completely inhibited at an accumulative dose of 77?μg/ml. In isolated cardiomyocytes, the acetogenins-enriched extract induced apoptosis through the activation of the intrinsic pathway at 43?μg/ml. In isolated mitochondria, it inhibited complex I activity on NADH-linked respiration, as would be expected, but also induced permeability transition on succinate-linked respiration. Cyclosporine A, a known blocker of permeability transition, significantly prevented the permeability transition triggered by the acetogenins-enriched extract. In addition, our acetogenins-enriched extract inhibited ADP/ATP exchange, suggesting that an important element in phosphate or adenylate transport was affected. In this manner we suggest that acetogenins-enriched extract from Persea americana could directly modulate permeability transition, an entity not yet associated with the acetogenins' direct effects, resulting in cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号