首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Seven N-(5′-phosphopyridoxyl) amino acids, reduced analogs of the glutamate-pyridoxal phosphate Schiff base, were synthesized and purified. All of them inhibited mouse brain glutamate decarboxylase activity. The four most potent inhibitors were the aminooxyacetate, GABA, cysteinesul-finate and glutamate derivatives, and the effect of these compounds was studied kinetically. The inhibition produced was in all cases mixed function with respect to glutamate and competitive with respect to pyridoxal phosphate. The inhibition kinetics were non-linear. These results are interpreted in terms of an ordered binding of pyridoxal phosphate and glutamate to the enzyme. Furthermore, they are consistent with previous findings suggesting the existence of two kinds of glutamate decarboxylase activity differing in their dependence on free pyridoxal phosphate.  相似文献   

2.
The kinetics of the inhibition of mouse brain glutamate decarboxylase by pyri-doxaI-5′-phosphate oxime-O-acetic acid (PLPOAA) was studied. The inhibition was noncompetitive with regard to glutamic acid; it could be partially reversed by pyridoxal phosphate, but only when the concentration of the latter in the incubation medium was higher than that of pyridoxal-5′-phosphate oxime-O-acetic acid. The inhibition produced by aminooxyacetic acid, which is remarkably greater than that produced by PLPOAA, was also partially reversed only when an excess of pyridoxal phosphate was added. Both in the presence and in the absence of a saturating concentration of pyridoxal phosphate, the activity of the enzyme was decreased by PLPOAA at a 10?4m concentration to a value of about 50 per cent of the control value obtained without added coenzyme. This activity could not be further reduced even when PLPOAA concentration was increased to 5 × 10?3m . This same minimal activity of glutamate decarboxylase was obtained after dialysis of the enzymic preparation, or after incubation with glutamic acid in the cold followed by filtration through Sephadex G-25. The addition of pyridoxal phosphate to the dialysed or glutamic acid-treated enzyme restored the activity to almost the control values. PLPOAA did not affect the activity of glutamate decarboxylase from E. coli or that of DOPA decarboxylase and GABA transaminase from mouse brain. To account for the results obtained it is postulated that brain glutamate decarboxylase has two types of active site, one with firmly bound, non-dialysable pyridoxal phosphate and the other with loosely bound, dialysable coenzyme; PLPOAA behaves as a weak inhibitor probably because it can combine mainly with the loosely bound coenzyme site, while aminooxyacetic acid is a potent inhibitor probably because it can block both the ‘loosely bound coenzyme’ and the ‘firmly bound coenzyme’ sites.  相似文献   

3.
The sensitivity of cerebral glutamate decarboxylase (GAD) activity to hypotonic homogenization medium, centrifugation, Triton-X-100, and preincubation at 37°C was studied in the developing mouse. In newborn and 5-day-old animals, GAD activity was markedly inhibited by all these conditions. From 5 days to adult age, the sensitivity of the enzyme to the experimental conditions used decreased progressively, with the greatest change between the 10th and 15th days. It is concluded that the newborn form of the enzyme, which is unstable and shows a relatively high affinity for pyridoxal phosphate, is substituted by the adult form during the maturation of the brain. The activity of the adult form is much more stable and more dependent on free pyridoxal phosphate. The implications of these findings in the regulation of cerebral excitability during development are discussed.  相似文献   

4.
Conserved lysines of mouse ornithine decarboxylase were individually mutated to arginines. The mutations at amino acid residues 69, 115, and 169 greatly reduced or abolished enzymatic activity. Lysine 69 is the site of Schiff base formation with the cofactor pyridoxal phosphate; the functional role of the other two lysines essential for activity is not known. Coexpression of wild type ornithine decarboxylase along with the lysine 115 to arginine mutant reduced the activity of the former without diminishing the amount of wild type protein. This form of negative complementation was seen when wild type and mutant protein were coexpressed either by in vitro translation or in bacteria. The data are consistent with the conclusion that a wild type and mutant subunit form a heterodimer that is enzymatically inactive.  相似文献   

5.
Regulatory properties of brain glutamate decarboxylase   总被引:13,自引:0,他引:13  
1. Glutamate decarboxylase is a focal point for controlling gamma-aminobutyric acid (GABA) synthesis in brain. Several factors that appear to be important in the regulation of GABA synthesis have been identified by relating studies of purified glutamate decarboxylase to conditions in vivo. 2. The interaction of glutamate decarboxylase with its cofactor, pyridoxal 5'-phosphate, is a regulated process and appears to be one of the major means of controlling enzyme activity. The enzyme is present in brain predominantly as apoenzyme (inactive enzyme without bound cofactor). Studies with purified enzyme indicate that the relative amounts of apo- and holoenzyme are determined by the balance in a cycle that continuously interconverts the two. 3. The cycle that interconverts apo- and holoenzyme is part of the normal catalytic mechanism of the enzyme and is strongly affected by several probable regulatory compounds including pyridoxal 5'-phosphate, ATP, inorganic phosphate, and the amino acids glutamate, GABA, and aspartate. ATP and the amino acids promote apoenzyme formation and pyridoxal 5'-phosphate and inorganic phosphate promote holoenzyme formation. 4. Numerous studies indicate that brain contains multiple molecular forms of glutamate decarboxylase. Multiple forms that differ markedly in kinetic properties including their interactions with the cofactor have been isolated and characterized. The kinetic differences among the forms suggest that they play a significant role in the regulation of GABA synthesis.  相似文献   

6.
1. Pyridoxal 5'-phosphate is a cofactor essential for the enzymic activity of aminolaevulinate synthetase from Rhodopseudomonas spheroides. It also aids activation of the low-activity enzyme by trisulphides such as cystine trisulphide, whereas inactivation of enzyme is facilitated by its absence. 2. The fluorescence spectrum of purified high-activity enzyme is that expected for a pyridoxal phosphate--Schiff base, but the firmly bound cofactor does not appear to be at the active centre. In dilute solutions of enzyme this grouping is inaccessible to nucleophiles such as glycine, hydroxylamine, borohydride and cyanide, at pH 7.4. 3. An active-centre Schiff base is formed between enzyne and added pyridoxal phosphate, which is accessible to nucleophiles. Concentrated solutions of this enzyme--Schiff base on treatment with glycine yield apo- and semi-apoenzyme, which can re-bind pyridoxal phosphate. 4. Two types of binding of pyridoxal phosphate are distinguishable in dilute solution of enzyme, but these become indistinguishable when concentrated solutions are treated with cofactor. A change occurs in the susceptibility towards borohydride of the fluorescence of the "structural" pyridoxal phosphate. 5. One or two molecules of cofactor are bound per subunit of mol. wt. 50 000 in semiapo- or holo-enzyme. The fluorescence of pyridoxamine phosphate covalently bound to enzyme also indicates one to two nmol of reducible Schiff base per 7000 units of activity in purified and partially purified samples of enzyme. 6. Cyanide does not convert high-activity into low-activity enzyme, but with the enzyme-pyridoxal phosphate complex it forms a yellow fluorescent derivative that is enzymically active.  相似文献   

7.
Pyridoxal 5'-phosphate and other aromatic aldehydes inactivate rhodanese. The inactivation reaches higher extents if the enzyme is in the sulfur-free form. The identification of the reactive residue as an amino group has been made by spectrophotometric determination of the 5'-phosphorylated pyridoxyl derivative of the enzyme. The inactivation increases with pyridoxal 5'-phosphate concentration and can be partially removed by adding thiosulfate or valine. Prolonged dialysis against phosphate buffer also leads to the enzyme reactivation. The absorption spectra of the pyridoxal phosphate - rhodanese complex show a peak at 410 nm related to the Schiff base and a shoulder in the 330 nm region which is probably due to the reaction between pyridoxal 5'-phosphate and both the amino and thiol groups of the enzyme that appear reasonably close to each other. The relationship betweenloss of activity and pyridoxal 5'-phosphate binding to the enzyme shows that complete inactivation is achieved when four lysyl residues are linked to pyridoxal 5'-phosphate.  相似文献   

8.
Treatment of 1 microM wheat-germ aspartate transcarbamoylase with 1 mM-pyridoxal 5'-phosphate caused a rapid loss of activity, concomitant with the formation of a Schiff base. Complete loss of activity occurred within 10 min when the Schiff base was reduced with a 100-fold excess of NaBH4. Concomitantly, one amino group per chain was modified. No further residues were modified in the ensuing 30 min. The kinetics of inactivation were examined under conditions where the Schiff base was reduced before assay. Inactivation was apparently first-order. The pseudo-first-order rate constant, kapp., showed a hyperbolic dependence upon the concentration of pyridoxal 5'-phosphate, suggesting that the enzyme first formed a non-covalent complex with the reagent, modification of a lysine then proceeding within this complex. Inactivation of the enzyme by pyridoxal was 20 times slower than that by pyridoxal 5'-phosphate, indicating that the phosphate group was important in forming the initial complex. Partial protection against pyridoxal phosphate was provided by the leading substrate, carbamoyl phosphate, and nearly complete protection was provided by the bisubstrate analogue, N-phosphonoacetyl-L-aspartate, and the ligand-pair carbamoyl phosphate plus succinate. Steady-state kinetic studies, under conditions that minimized inactivation, showed that pyridoxal 5'-phosphate was also a competitive inhibitor with respect to the leading substrate, carbamoyl phosphate. Pyridoxal 5'-phosphate therefore appears to be an active-site-directed reagent. A sample of the enzyme containing one reduced pyridoxyl group per chain was digested with trypsin, and the labelled peptide was isolated and shown to contain a single pyridoxyl-lysine residue. Partial sequencing around the labelled lysine showed little homology with the sequence surrounding lysine-84, an active-centre residue of the catalytic subunit of aspartate transcarbamoylase from Escherichia coli, whose reaction with pyridoxal 5'-phosphate shows many similarities to the results described in the present paper. Arguably the reactive lysine is conserved between the two enzymes whereas the residues immediately surrounding the lysine are not. The same conclusion has been drawn in a comparison of reactive histidine residues in the two enzymes [Cole & Yon (1986) Biochemistry 25, 7168-7174].  相似文献   

9.
Glutamate decarboxylase from a mouse brain P2 fraction undergoes a twofold activation in the presence of 0.5 mM ATP. No such stimulation by ATP occurs if the enzyme is assayed in the presence of excess pyridoxal phosphate as cofactor. The ATP-induced stimulation is almost completely eliminated if the enzyme is dialysed before its assay. [lambda-32P]ATP present during the enzyme measurement is converted to [32P]pyridoxal phosphate. These results demonstrate that the activation produced by ATP is the result of the generation of cofactor during the course of the assay. This phenomenon may be a reflection of a control mechanism of glutamate decarboxylase activity.  相似文献   

10.
M J Modak 《Biochemistry》1976,15(16):3620-3626
Pyridoxal 5'-phosphate at concentrations greater than 0.5 mM inhibits polymerization of deoxynucleoside triphosphate catalyzed by a variety of DNA polymerases. The requirement for a phosphate as well as aldehyde moiety of pyridoxal phosphate for inhibition to occur is clearly shown by the fact that neither pyridoxal nor pyridoxamine phosphate are effective inhibitors. Since the addition of nonenzyme protein or increasing the amount of template primer exerted no protective effect, there appears to be specific affinity between pyridoxal phosphate and polymerase protein. The deoxynucleoside triphosphates, however, could reverse the inhibition. The binding of pyridoxal 5'-phosphate to enzyme appears to be mediated through classical Schiff base formation between the pyridoxal phosphate and the free amino group(s) present at the active site of the polymerase protein. Kinetic studies indicate that inhibition by pyridoxal phosphate is competitive with respect to substrate deoxynucleoside triphosphate(s).  相似文献   

11.
—Some properties of glutamate decarboxylase (GAD) were studied in the brain of the carp (Carassius auratus), the pigeon (Columbia livia) and the mouse (Mus musculus). The optimum pH for GAD in the three species was 6·3-6·5. In the three species studied, GAD activity of brain homogenates in water was higher than that of homogenates in buffer. The supernatant from homogenates in Triton-X-100 gave an enzyme preparation which showed greater activation by pyridoxal phosphate than those obtained from complete water or buffer homogenates or from the supernatant of Water homogenates. In the absence of pyridoxal phosphate, the activity of carp GAD was considerably lower than that of mouse or pigeon GAD. The addition of pyridoxal phosphate resulted in a much greater activation of carp GAD than that of pigeon or mouse GAD. Pyridoxal phosphate content was also measured in brains of the species studied. The difference between coenzyme levels in carp and mouse was very small in comparison to the difference in GAD activity in the absence of exogenous coenzyme. The pyridoxal phosphate content of pigeon brain was higher than that of the other two species.  相似文献   

12.
M H O'Leary  R M Herreid 《Biochemistry》1978,17(6):1010-1014
Ornithine decarboxylase from Lactobacillus 30a is gradually inactivated by treatment with alpha-methylornithine, but activity is restored by treatment of the inactivated enzyme with pyridoxal phosphate. Inactivation of the enzyme is associated with formation of pyridoxamine phosphate and 5-amino-2-pentanone, alpha-Methylornithine is decarboxylated by the enzyme about 6000 times more slowly than is ornithine under the same conditions. These observations provide an explanation for the previously observed inhibition of ornithine decarboxylase by alpha-methylornithine [M. M. Adbel-Monem, N. E. Newton, and C. E. Weeks (1974), J. Med. Chem. 17, 4447]: alpha-Methylornithine undergoes a decarboxylation-dependent transamination as a result of incorrect protonation of the quinoid intermediate which is formed by decarboxylation of the enzyme-bound pyridoxal phosphate-substrate Schiff base. This protonation produces inactive enzyme. Decarboxylation of ornithine by this enzyme produces a small amount of 4-aminobutanal, presumably also by decarboxylation-dependent transamination.  相似文献   

13.
Amino groups in the pyridoxal phosphate, pyridoxamine phosphate, and apo forms of pig heart cytoplasmic aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC .2.6.1.1) have been reversibly modified with 2,4-pentanedione. The rate of modification has been measured spectrophotometrically by observing the formation of the enamine produced and this rate has been compared with the rate of loss of catalytic activity for all three forms of the enzyme. Of the 21 amino groups per 46 500 molecular weight, approx. 16 can be modified in the pyridoxal phosphate form with less than a 50% change in the catalytic activity of the enzyme. A slow inactivation occurs which is probably due to reaction of 2,4-pentanedione with the enzyme-bound pyridoxal phosphate. The pyridoxamine phosphate enzyme is completely inactivated by reaction with 2,4-pentanedione. The inactivation of the pyridoxamine phosphate enzyme is not inhibited by substrate analogs. A single lysine residue in the apoenzyme reacts approx. 100 times faster with 2,4-pentanedione than do other amino groups. This lysine is believed to be lysine-258, which forms a Schiff base with pyridoxal phosphate in the holoenzyme.  相似文献   

14.
A homogeneous glutamate decarboxylase isolated from pig brain contains 0.8 mol of tightly bound pyridoxal 5-phosphate/enzyme dimer. Upon addition of exogenous pyridoxal 5-phosphate (pyridoxal-5-P), the enzyme acquires maximum catalytic activity. Preincubation of the enzyme with L-glutamate (10 mM) brings about changes in the absorption spectrum of bound pyridoxal-5-P with the concomitant formation of succinic semialdehyde. However, the rate of this slow secondary reaction, i.e. decarboxylative transamination, is 10(-4) times the rate of normal decarboxylation. It is postulated that under physiological conditions enzymatically inactive species of glutamate decarboxylase, generated by the process of decarboxylative transamination, are reconstituted by pyridoxal-5-P produced by the cytosolic enzymes pyridoxal kinase and pyridoxine-5-P oxidase. The catalytic activity of resolved glutamate decarboxylase is recovered by preincubation with phospho-pyridoxyl-ethanolamine phosphate. The experimental evidence is consistent with the interpretation that the resolved enzyme binds the P-pyridoxyl analog, reduces the stability of the covalent bond of the phospho-pyridoxyl moiety, and catalyzes the formation of pyridoxal-5-P.  相似文献   

15.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

16.
We have recorded 1H NMR spectra in H2O for exchangeable protons of four pyridoxal phosphate-dependent enzymes: D-serine dehydratase, aspartate aminotransferase, tryptophan: indole-lyase and glutamate decarboxylase. The molecular masses range from 48-250 kDa. In every case there are downfield peaks which are lost when the apoenzyme is formed. In most cases some peaks shift in response to interactions with substrates and inhibitors and with changes in pH. We associate one downfield resonance with the proton on the ring nitrogen of the coenzyme and others with imidazole groups that interact with coenzyme or substrates. The chemical shift for the coenzyme-bound proton differs for free enzyme, substrate Schiff base or quinonoid forms.  相似文献   

17.
Some properties of glutamate decarboxylase (EC 4.1.1.15) activity in brain of newborn and adult mouse were studied comparatively. It was found that glutamate decarboxylase of the newborn brain was strongly inactivated by homogenization in hypotonic medium, centrifugation of isotonic sucrose homogenates, preincubation at 37 degrees C or the addition of Triton-X-100, whereas the adult brain enzyme was practically unaffected by any of these conditions. It was also found that the newborn glutamate decarboxylase was less activated by pyridoxal 5'-phosphate and less inhibited by pyridoxal 5'-phosphate oxime-O-acetic acid, than the adult enzyme. These differences do not exist for brain dihydroxyphenylalanine decarboxylase (EC 4.1.1.26) and are not due to the release of inhibitors from the newborn brain. On the basis of the results obtained it is postulated that two forms of glutamate decarboxylase exist in brain: a newborn form, which is unstable and has high affinity for pyridoxal 5'-phosphate, and an adult form, which is much more stable and has low affinity for pyridoxal 5'-phosphate. The possible implications of these findings in the establishment of the gamma-aminobutyric acid dependent synaptic inhibitory mechanisms during development are discussed.  相似文献   

18.
L M Abell  M H O'Leary 《Biochemistry》1988,27(16):5927-5933
The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k14/k15 = 0.9770 +/- 0.0021, a carbon isotope effect k12/k13 = 1.0308 +/- 0.0006, and a carbon isotope effect for L-[alpha-2H]histidine of 1.0333 +/- 0.0001 at pH 6.3, 37 degrees C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli [Abell, L. M., & O'Leary, M. H. (1988) Biochemistry 27, 3325], the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.  相似文献   

19.
K Feldmann  E J Helmreich 《Biochemistry》1976,15(11):2394-2401
1 H NMR spectra of the 3-0-methylpyridoxal 5'-phosphate-n-butylamine reaction product indicated that this analogue forms a Schiff base in aprotic solvent. The uv spectral properties of 3-0-methylpyridoxal-5'-phosphate phosphorylase b correspond to those of the n-butylamine Schiff base derivative in dimethyl sulfoxide. On the basis of that and auxiliary uv and 1H NMR spectra of pyridoxal and pyridoxal 5'-phosphate and the corresponding Schiff base derivatives we have verified that pyridoxal 5' -phosphate is also bound as a Schiff base to phosphorylase and not as an aldamine. Since 3-0-methylpyridoxal-5'-phosphate phosphorylase is active, a proton shuttle between the 3-hydroxyl group and the pyridine nitrogen is excluded. This directs attention to the 5' -phosphate group of the cofactor as a candidate for a catalytic function. 31P NMR spectra of pyridoxal 5' -phosphate in phosphorylase b indicated that deprotonation of the 5' -phosphate group was unresponsive to external pH. Interaction of phosphorylase b with adenosine 5' -monophosphate, the allosteric effector required activity, and arsenate, which substitutes for phosphate as substrate, triggered a conformational change which resulted in deprotonation of the 5' -phosphate group of pyridoxal 5' at pH 7.6. It now behaved like in the pyridoxal-phosphate-epsilon-aminocaproate Schiff base in aqueous buffer, where the diionized form is dominant at this pH. Differences of line widths of the adenosine 5' -monophosphate signal point to different life times of the allosteric effector- enzyme complexes in the presence and absence of substrate (arsenate).  相似文献   

20.
—(1) Rats received single intraperitoneal injections of various neuroactive chemicals in order to compare the changes of gross behaviour and the level of pyridoxal phosphate as well as the activity of the decarboxylase of aromatic amino acids, of glutamate decarboxylase and of tyrosine transaminase in the brain. (2) The majority of excitatory agents tested (i.e. convulsives like amino-oxyacetate, thiosemicarbazide, pentylenetetrazol and oxotremorine; stimulants such as amphetamine, theophylline and methylphenidate; the amphetamine-like monoamine oxidase inhibitor tranylcypromine as well as the classical monoamine oxidase inhibitor iproniazid when combined with the monoamine releaser Ro 4-1284) caused a decrease in aromatic decarboxylase activity which was coexistent with maximal changes of gross behaviour and partly preceded the latter. The level of pyridoxal phosphate was only partially parallel. As an exception, depression of aromatic decarboxylase was lacking after cocaine (which reduced pyridoxal phosphate only), atropine, the hallucinogens lysergic acid diethylamide and mescaline as well as the combination of the dopamine precursor l -DOPA and the aromatic decarboxylase inhibitor Ro 4-4602. (3) Depression of obvious central nervous functions was almost regularly accompanied and in part preceded by increase of DCA activity (i.e. with the anaesthetics pentobarbitone, diethyl ether and chloroform, the neuroleptics chlorpromazine, haloperidol, reserpine and the benzoquinolizine Ro 4-1284 as well as the tranquillizers diazepam and chlordiazepoxide). Pyridoxal phosphate was increased during or after maximal behavioural changes by pentobarbitone and chlorpromazine only. As an exception, activation of aromatic decarboxylase was absent after morphine. (4) The activity of glutamate decarboxylase was significantly reduced by thiosemicarbazide only, whereas a distinct increase in enzyme activity was exclusively observed after atropine. (5) Tyrosine transaminase activity was significantly diminished by amino-oxyacetate only and showed a late increase after tranylcypromine. (6) It is concluded that there is an inverse relationship, in the majority of neuroactive chemicals tested, between changes of gross behaviour and cerebral aromatic decarboxylase activity. Thereby, the latter is neither regularly related to corresponding variations of the total cerebral pyridoxal phosphate nor to hitherto described alterations of the monoamine turnover nor to effects on other vitamin B6-dependent enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号