首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exotic plant invasions are a serious concern for land managers and conservationists. There is evidence that increased nitrogen availability favors exotic species and decreased nitrogen availability favors non-weedy native species. This study was conducted to test the effect of nitrogen availability on competition between two grass species with contrasting life histories, cheatgrass (Bromus tectorum), a North American exotic, and blue grama (Bouteloua gracilis), a North American native. We investigated the effects of nitrogen availability and competition on aboveground biomass, belowground biomass, height, and % nitrogen tissue concentrations by growing the two species in the greenhouse under five levels of nitrogen and six levels of competition. Nitrogen availability affected competition between Bromus tectorum and Bouteloua gracilis. At the lowest level of N availability, neither species was affected by competition. As N availability increased, aboveground biomass gain of Bromus was more negatively affected by intraspecific competition relative to interspecific competition while the opposite occurred for Bouteloua. At the competition level at which each species gained the most aboveground biomass, Bromus had a linear response to increasing N availability while the response of Bouteloua was asymptotic. Our results do provide some support for the theory that fast growing exotic species have a rapid response to nutrient enrichment while native non-weedy species do not, and that low N levels can reduce competitive pressure from the exotic on the native.  相似文献   

2.
Exotic plants establish persistent communities   总被引:1,自引:0,他引:1  
Many exotic plants utilize early successional traits to invade disturbed sites, but in some cases these same species appear able to prevent re-establishment of late-successional and native species. Between 2002 and 2004, I studied 25 fields that represent a 52-year chronosequence of agricultural abandonment in a shrub-steppe ecosystem in Washington State, USA, to determine if exotic plants behaved as early successional species (i.e., became less abundant over time) or if they established persistent communities. Exotics maintained dominance in tilled (73% of total cover) relative to never-tilled (6% of total cover) fields throughout the chronosequence. Exotic community composition, however, changed on annual and decadal timescales. Changes in exotic community composition did not reflect typical successional patterns. For example, some exotic perennial species (e.g., Centaurea diffusa and Medicago sativa) were less common and some exotic annual species (e.g., Sissymbrium loeselii and S. altissimum) were more common in older relative to younger fields. Exotics in the study area appeared to establish communities that are resistant to re-invasion by natives, resilient to losses of individual exotic species, and as a result, maintain total exotic cover over both the short- and long-term: exotics replaced exotics. Exotics did not invade native communities and natives did not invade exotic communities across the chronosequence. These results suggest that, in disturbed sites, exotic plants establish an alternative community type that while widely variable in composition, maintains total cover over annual and decadal timescales. Identifying alternative state exotic communities and the mechanisms that explain their growth is likely to be essential for native plant restoration.  相似文献   

3.
Robert R. Blank 《Plant and Soil》2010,326(1-2):331-343
Few studies have examined plant–soil relationships in competitive arenas between exotic and native plants in the western United States. A pair-wise competitive design was used to evaluate plant–soil relationships between seedlings of the exotic annual grasses Bromus tectorum and Taeniatherium caput-medusae and the native perennial grasses Elymus elymoides and Pseudoroegneria spicata. Two soils were tested: an arid soil (argid) occupied by E. elymoides and presently invaded by B. tectorum and a high elevation, high organic matter, soil (aquept) where none of the tested species would typically occur. Plant growth proceeded for 85 days at which time above-ground biomass and tissue nutrient concentrations were quantified. Soil also was collected from the rooting zone beneath each species and analyzed for various nutrient pools. The exotic species had significantly greater above-ground biomass than the natives and grew far better in the aquept soil than the argid soil. Growth of B. tectorum, and to some degree, T. caput-medusae was suppressed in intraspecific competition and enhanced, especially in the aquept soil, when competing with the natives. Although not significant, biomass of natives strongly trended downward when competing with the exotic grasses. Overall, concentrations of tissue nutrients were minimally affected by competition, but natives tended to be more negatively affected by competition with exotics. Except for phosphorus (P), all species had significantly greater nutrient concentrations when growing in the aquept soil compared to the argid soil. In both soils, exotics had significant greater tissue concentrations of manganese (Mn), magnesium (Mg), and iron (Fe), while natives had significantly greater nitrogen (N). Species affects on soil nutrient pools occurred mostly in the aquept soil with exotic species significantly decreasing pools of available N, potentially available N, and soil-solution pools of calcium (Ca2+), potassium (K+), and magnesium (Mg2+) relative to natives. Overall, the data suggest that, in the seedling state, B. tectorum is a superior competitor. Moreover, when the natives compete intra- or interspecifically, particularly in the aquept soil, availability of N and other nutrients in their rooting zone is consistently greater than when they compete interspecifically with the exotic grasses. These data suggest the exotics are able to co-opt nutrients in the rooting zone of the natives and perhaps gain a competitive advantage.  相似文献   

4.
There is growing interest in the addition of carbon (C) as sucrose or sawdust to the soil as a tool to reduce plant‐available nitrogen (N) and alter competitive interactions among species. The hypothesis that C addition changes N availability and thereby changes competitive dynamics between natives and exotics was tested in a California grassland that had experienced N enrichment. Sawdust (1.2 kg/m) was added to plots containing various combinations of three native perennial bunchgrasses, exotic perennial grasses, and exotic annual grasses. Sawdust addition resulted in higher microbial biomass N, lower rates of net N mineralization and net nitrification, and higher concentrations of extractable soil ammonium in the soil. In the first year sawdust addition decreased the degree to which exotic annuals competitively suppressed the seedlings of Nassella pulchra and, to a lesser extent, Festuca rubra, both native grasses. However there was no evidence of reduced growth of exotic grasses in sawdust‐amended plots. Sawdust addition did not influence interactions between the natives and exotic perennial grasses. In the second year, however, sawdust addition did not affect the interactions between the natives and either group of exotic grasses. In fact, the native perennial grasses that survived the first year of competition with annual grasses significantly reduced the aboveground productivity of annual grasses even without sawdust addition. These results suggest that the addition of sawdust as a tool in the restoration of native species in our system provided no significant benefit to natives over a 2‐year period.  相似文献   

5.
Competition and resource availability influence invasions into native perennial grasslands by non-native annual grasses such as Bromus tectorum. In two greenhouse experiments we examined the influence of competition, water availability, and elevated nitrogen (N) and phosphorus (P) availability on growth and reproduction of the invasive annual grass B. tectorum and two native perennial grasses (Elymus elymoides, Pascopyrum smithii). Bromus tectorum aboveground biomass and seed production were significantly reduced when grown with one or more established native perennial grasses. Conversely, average seed weight and germination were significantly lower in the B. tectorum monoculture than in competition native perennial grasses. Intraspecific competition reduced per-plant production of both established native grasses, whereas interspecific competition from B. tectorum increased production. Established native perennial grasses were highly competitive against B. tectorum, regardless of water, N, or P availability. Bromus tectorum reproductive potential (viable seed production) was not significantly influenced by any experimental manipulation, except for competition with P. smithii. In all cases, B. tectorum per-plant production of viable seeds exceeded parental replacement. Our results show that established plants of Elymus elymoides and Pascopyrum smithii compete successfully against B. tectorum over a wide range of soil resource availability.  相似文献   

6.
Populations of the rare annual forb Amsinckia grandiflora may be declining because of competitive suppression by exotic annual grasses, and may perform better in a matrix of native perennial bunchgrasses. We conducted a field competition experiment in which Amsinckia seedlings were transplanted into forty 0.64‐m2 experimental plots of exotic annual grassland or restored perennial grassland. The perennial grassland plots were restored using mature 3 cm‐diameter plants of the native perennial bunchgrass Poa secunda planted in three densities. The exotic annual grassland plots were established in four densities through manual removal of existing plants. Both grass types reduced soil water potential with increasing biomass, but this reduction was not significantly different between grass types. Both grass types significantly reduced the production of Amsinckia inflorescences. At low and intermediate densities (dry biomass per unit area of 20–80 g/m2), the exotic annual grasses reduced Amsinckia inflorescence number to a greater extent than did Poa, although at high densities (>90 g/m2) both grass types reduced the number of Amsinckia inflorescences to the same extent. The response of Amsinckia inflorescence number to Poa biomass was linear, whereas the same response to the annual grass biomass is logarithmic, and appeared to be related to graminoid cover. This may be because of the different growth forms exhibited by the two grass types. Results of this research suggest that restored native perennial grasslands at intermediate densities have a high habitat value for the potential establishment of the native annual A. grandiflora.  相似文献   

7.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

8.
Abstract We investigated what factors lead to invasion of exotics or re‐colonization of native perennial grasses in the South Australian mid‐north grasslands. We manipulated 160 experimental quadrats by clipping, irrigation and seed addition and assessed recruitment by exotics in an area dominated by perennial grasses and perennial grass recruitment in an area dominated by exotics. Treatment effects differed with season for exotics: their biomass increased with irrigation in autumn and seed addition in winter. However, in both periods other factors, probably soil properties, also had a strong effect. We detected no perennial grass seedlings in the quadrats over 1 year, possibly due to unsuitable environmental conditions or persistent high competition levels. Under controlled conditions the presence of the invasive annual Avena barbata had a strong negative effect on the recruitment of the native perennial Austrodanthonia caespitosa at any moisture and nutrient availability. Avena also germinated faster and more frequently than Austrodanthonia, especially at low soil moisture. During an imposed drought Austrodanthonia seedlings survived longer in the absence of Avena. The results suggest that annual exotics are highly responsive to resources and can quickly invade areas, while the re‐colonization of invaded areas by native grasses requires a complex (and less likely) rainfall regime.  相似文献   

9.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

10.
Exotic plants have been found to use allelochemicals, positive plant–soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14–8% and 4–0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4–3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil‐based exotic plant control tool, especially for B. tectorum and C. diffusa.  相似文献   

11.
Native perennial grasses were once common in California prairies that are now dominated by annual grasses introduced from Europe. Competition from exotics may be a principal impediment to reestablishment of native perennial grasses. Introduced annual grasses, such as Vulpia myuros (zorro fescue), are often included with native perennial species in revegetation seed mixtures used in California. To examine the potential suppressive effect of this graminoid, we evaluated the growth and performance of a mixture of California native perennial grasses and resident weeds when grown with varying densities of V. myuros. The annual fescue exhibited a strongly plastic growth response to plant density, producing similar amounts of above‐ground biomass at all seeding densities. Perennial grass seedling survival and above‐ ground biomass decreased and individuals became thinner (i.e., reduced weight‐to‐height ratio) with increasing V. myuros seeding density. V. myuros also significantly suppressed above‐ground biomass and densities of weeds and had a more negative effect on weed densities than on native perennial grass densities. Biomass of native grasses and weeds was not differentially affected by increasing densities of V. myuros. Overall, because V. myuros significantly reduced the survival and performance of the mixture of native perennial grasses and this effect increased with increasing V. myuros density, we conclude that including this exotic annual in native seed mixtures is counterproductive to restoration efforts.  相似文献   

12.
Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m−2) and native species (0, 150, 300, and 600 viable seeds m−2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.  相似文献   

13.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

14.
Differences in resource acquisition between native and exotic plants is one hypothesis to explain invasive plant success. Mechanisms include greater resource acquisition rates and greater plasticity in resource acquisition by invasive exotic species compared to non-invasive natives. We assess the support for these mechanisms by comparing nitrate acquisition and growth of invasive annual and perennial grass seedlings in western North America. Two invasive exotic grasses (Bromus tectorum and Taeniatherum caput-medusae) and three perennial native and exotic grasses (Pseudoroegneria spicata, Elymus elymoides, and Agropyron cristatum) were grown at various temperatures typical of autumn and springtime when resource are abundant and dominance is determined by rapid growth and acquisition of resources. Bromus tectorum and perennial grasses had similar rates of nitrate acquisition at low temperature, but acquisition by B. tectorum significantly exceeded perennial grasses at higher temperature. Consequently, B. tectorum had the highest acquisition plasticity, showcasing its ability to take advantage of transient warm periods in autumn and spring. Nitrate acquisition by perennial grasses was limited either by root production or rate of acquisition per unit root mass, suggesting a trade-off between nutrient acquisition and allocation of growth to structural tissues. Our results indicate the importance of plasticity in resource acquisition when temperatures are warm such as following autumn emergence by B. tectorum. Highly flexible and opportunistic nitrate acquisition appears to be a mechanism whereby invasive annual grasses exploit soil nitrogen that perennials cannot use.  相似文献   

15.
One goal of post‐fire native species seeding is to increase plant community resistance to exotic weed invasions, yet few studies address the impacts of seeding on exotic annual establishment and persistence. In 2010 and 2011, we investigated the influence of seedings on exotic annuals and the underlying microbial communities. The wildfire site in northern Utah was formerly dominated by Artemisia tridentata ssp. wyomingensis, but burned in September 2008. Experimental seeding treatments were installed in November 2008 to examine strategies for establishing native species using two drills, hand broadcasts and different timing of seed applications (resulting in 13 seeding treatments). We collected aboveground biomass of invasive annuals (Halogeton glomeratus, Salsola kali, and Bromus tectorum), other volunteer plants from the extant seed bank, and seeded species from all treatments in the second and third years after fire. We sampled soils within microsites beneath native perennial bunchgrass and exotic annuals to characterize underlying soil microbial communities. High precipitation following seeding led to strong seedling establishment and we found few differences between seeding treatments established with either drill. All seeded treatments reduced exotic biomass by at least 90% relative to unseeded controls. Soil microbial communities (phospholipid fatty acid analysis), beneath B. tectorum, Poa secunda, and Pseudoroegneria spicata microsites differed little 3 years after fire. However, microbial abundance beneath P. spicata increased from June to July, suggesting that microbial communities beneath successful seedings can vary greatly within a single growing season.  相似文献   

16.
Degraded communities often contain a subset of the species that comprised the predisturbance community. These represent an important legacy of the predisturbance state, yet restoration treatments may be detrimental to them. This study examined the potential of leaf traits and life form to predict whether restoration treatments can maintain legacy swards of Austrostipa bigeniculata (hereafter Austrostipa) while controlling exotic annuals in temperate eucalypt woodlands. Treatments included carbon addition to reduce soil nitrate, both with and without burning or pulse grazing to deplete exotic seed pools. We compared leaf traits of Austrostipa with a native grass (Themeda triandra) known to be advantaged, and 8 exotic annual species known to be disadvantaged by these treatments. Leaf traits indicated potentially greater negative impacts of carbon addition on exotic annuals compared to Austrostipa, and on Austrostipa compared to Themeda, suggesting a net restoration benefit. Similarly, burning or pulse grazing is expected to have little negative impact on perennial resprouting grasses (hemicryptophytes; Austrostipa and Themeda) compared with annual exotics (therophytes) with short‐lived seed banks. Treatment responses were largely consistent with predictions: treatments that significantly reduced exotic annuals had no net disadvantage to Austrostipa swards despite significant reductions in Austrostipa seedling growth with carbon addition. Indeed by Year 3, Austrostipa mortality in untreated plots led to 46% lower Austrostipa abundance than in treated plots at one site, potentially due to litter build‐up or other mechanisms. We conclude that plant traits provide a useful framework for designing restoration transitions that retain native legacy species while controlling exotics.  相似文献   

17.
Cheatgrass (Bromus tectorum) and other exotic winter‐active plants can be persistent invaders in native grasslands, growing earlier in the spring than native plants and pre‐empting soil resources. Effective management strategies are needed to reduce their abundance while encouraging the reestablishment of desirable native plants. In this 4‐year study, we investigated whether mowing and seeding with native perennial grasses could limit growth of exotic winter‐actives, and benefit growth of native plants in an invaded grassland in Colorado, United States. We established a split‐plot experiment in October 2008 with 3 mowing treatments: control, spring‐mowed, and spring/summer‐mowed (late spring, mid‐summer, and late summer), and 3 within‐plot seeding treatments: control, added B. tectorum seeds, and added native grass seeds. Cover of plant species and aboveground biomass were measured for 3 years. In March and June of 2010, 2011, and March of 2012, B. tectorum and other winter‐annual grasses were half as abundant in both mowing treatments as in control plots; however, cover of non‐native winter‐active forbs increased 2‐fold in spring‐mowed plots and almost 3‐fold in spring/summer‐mowed plots relative to controls. These patterns remained consistent 1 year after termination of treatments. Native cool‐season grasses were most abundant in spring‐mowed plots, and least abundant in control plots. There was higher cover of native warm‐season grasses in spring/summer‐mowed plots than in control plots in July 2011 and 2012. The timing of management can have strong effects on plant community dynamics in grasslands, and this experiment indicates that adaptive management can target the temporal niche of undesirable invasive species.  相似文献   

18.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

19.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

20.
Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large‐scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P. balsamifera and P. deltoides spp. deltoides), native hybrids (P. deltoides × P. balsamifera), and exotic hybrids (trees bearing Populus nigra and P. maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P. balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号