首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sgs1 is a member of the RecQ family of DNA helicases, which have been implicated in genomic stability, cancer and ageing. Srs2 is another DNA helicase that shares several phenotypic features with Sgs1 and double sgs1srs2 mutants have a severe synthetic growth phenotype. This suggests that there may be functional overlap between these two DNA helicases. Consistent with this idea, we found the srs2Δ mutant to have a similar genotoxin sensitivity profile and replicative lifespan to the sgs1Δ mutant. In order to directly test if Sgs1 and Srs2 are functionally interchangeable, the ability of high-copy SGS1 and SRS2 plasmids to complement the srs2Δ and sgs1Δ mutants was assessed. We report here that SGS1 is a multicopy suppressor of the methyl methanesulphonate (MMS) and hydroxyurea sensitivity of the srs2Δ mutant, whereas SRS2 overexpression had no complementing ability in the sgs1Δ mutant. Domains of Sgs1 directly required for processing MMS-induced DNA damage, most notably the helicase domain, are also required for complementation of the srs2Δ mutant. Although SGS1 overexpression was unable to rescue the shortened mean replicative lifespan of the srs2Δ mutant, maximum lifespan was significantly increased by multicopy SGS1. We conclude that Sgs1 is able to partially compensate for the loss of Srs2.  相似文献   

2.
Bessler JB  Zakian VA 《Genetics》2004,168(3):1205-1218
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.  相似文献   

3.
Evidence from many organisms indicates that the conserved RecQ helicases function in the maintenance of genomic stability. Mutation of SGS1 and WRN, which encode RecQ homologues in budding yeast and humans, respectively, results in phenotypes characteristic of premature aging. Mutation of SRS2, another DNA helicase, causes synthetic slow growth in an sgs1 background. In this work, we demonstrate that srs2 mutants have a shortened life span similar to sgs1 mutants. Further dissection of the sgs1 and srs2 survival curves reveals two distinct phenomena. A majority of sgs1 and srs2 cells stops dividing stochastically as large-budded cells. This mitotic cell cycle arrest is age independent and requires the RAD9-dependent DNA damage checkpoint. Late-generation sgs1 and srs2 cells senesce due to apparent premature aging, most likely involving the accumulation of extrachromosomal rDNA circles. Double sgs1 srs2 mutants are viable but have a high stochastic rate of terminal G2/M arrest. This arrest can be suppressed by mutations in RAD51, RAD52, and RAD57, suggesting that the cell cycle defect in sgs1 srs2 mutants results from inappropriate homologous recombination. Finally, mutation of RAD1 or RAD50 exacerbates the growth defect of sgs1 srs2 cells, indicating that sgs1 srs2 mutants may utilize single-strand annealing as an alternative repair pathway.  相似文献   

4.
In Saccharomyces cerevisiae the rate of DNA replication is slowed down in response to DNA damage as a result of checkpoint activation, which is mediated by the Mec1 and Rad53 protein kinases. We found that the Srs2 DNA helicase, which is involved in DNA repair and recombination, is phosphorylated in response to intra-S DNA damage in a checkpoint-dependent manner. DNA damage-induced Srs2 phosphorylation also requires the activity of the cyclin-dependent kinase Cdk1, suggesting that the checkpoint pathway might modulate Cdk1 activity in response to DNA damage. Moreover, srs2 mutants fail to activate Rad53 properly and to slow down DNA replication in response to intra-S DNA damage. The residual Rad53 activity observed in srs2 cells depends upon the checkpoint proteins Rad17 and Rad24. Moreover, DNA damage-induced lethality in rad17 mutants depends partially upon Srs2, suggesting that a functional Srs2 helicase causes accumulation of lethal events in a checkpoint-defective context. Altogether, our data implicate Srs2 in the Mec1 and Rad53 pathway and connect the checkpoint response to DNA repair and recombination.  相似文献   

5.
Trinucleotide repeats (TNRs) undergo frequent mutations in families afflicted with certain neurodegenerative disorders and in model organisms. TNR instability is modulated both by the repeat tract itself and by cellular proteins. Here we identified the Saccharomyces cerevisiae DNA helicase Srs2 as a potent and selective inhibitor of expansions. srs2 mutants had up to 40-fold increased expansion rates of CTG, CAG, and CGG repeats. The expansion phenotype was specific, as mutation rates at dinucleotide repeats, at unique sequences, or for TNR contractions in srs2 mutants were not altered. Srs2 is known to suppress inappropriate genetic recombination; however, the TNR expansion phenotype of srs2 mutants was largely independent of RAD51 and RAD52. Instead, Srs2 mainly functioned with DNA polymerase delta to block expansions. The helicase activity of Srs2 was important, because a point mutant lacking ATPase function was defective in blocking expansions. Purified Srs2 was substantially better than bacterial UvrD helicase at in vitro unwinding of a DNA substrate that mimicked a TNR hairpin. Disruption of the related helicase gene SGS1 did not lead to excess expansions, nor did wild-type SGS1 suppress the expansion phenotype of an srs2 strain. We conclude that Srs2 selectively blocks triplet repeat expansions through its helicase activity and primarily in conjunction with polymerase delta.  相似文献   

6.
DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.  相似文献   

7.
RecQ DNA helicases, including yeast Sgs1p and the human Werner and Bloom syndrome proteins, participate in telomere biology, but the underlying mechanisms are not fully understood. Here, we explore the protein sequences and genetic interactors of Sgs1p that function to slow the senescence of telomerase (tlc1) mutants. We find that the S-phase checkpoint function of Sgs1p is dispensable for preventing rapid senescence, but that Sgs1p sequences required for homologous recombination, including the helicase domain and topoisomerase III interaction domain, are essential. sgs1 and rad52 mutations are epistatic during senescence, indicating that Sgs1p participates in a RAD52-dependent recombinational pathway of telomere maintenance. Several mutations that are synthetically lethal with sgs1 mutation and which individually lead to genome instability, including mus81, srs2, rrm3, slx1 and top1, do not speed the senescence of tlc1 mutants, indicating that the rapid senescence of sgs1 tlc1 mutants is not caused by generic genome instability. However, mutations in SLX5 or SLX8, which encode proteins that function together in a complex that is required for viability in sgs1 mutants, do speed the senescence of tlc1 mutants. These observations further define roles for RecQ helicases and related proteins in telomere maintenance.  相似文献   

8.
The Saccharomyces cerevisiae Uls1 belongs to the Swi2/Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here we show that Uls1 is implicated in DNA repair independently of the replication stress response pathways mediated by the endonucleases Mus81 and Yen1 and the helicases Mph1 and Srs2. Uls1 works together with Sgs1 and we demonstrate that the attenuation of replication stress-related defects in sgs1Δ by deletion of ULS1 depends on a functional of Rad51 recombinase and post-replication repair pathway mediated by Rad18 and Rad5, but not on the translesion polymerase, Rev3. The higher resistance of sgs1Δ uls1Δ mutants to genotoxic stress compared to single sgs1Δ cells is not the result of decreased formation or accelerated resolution of recombination-dependent DNA structures. Instead, deletion of ULS1 restores stability of the rDNA region in sgs1Δ cells. Our data suggest that Uls1 may contribute to genomic stability during DNA synthesis and channel the repair of replication lesions into the Sgs1-dependent pathway, with DNA translocase and SUMO binding activities of Uls1 as well as a RING domain being essential for its functions in replication stress response.  相似文献   

9.
The budding yeast Srs2 is the archetype of helicases that regulate several aspects of homologous recombination (HR) to maintain genomic stability. Srs2 inhibits HR at replication forks and prevents high frequencies of crossing-over. Additionally, sensitivity to DNA damage and synthetic lethality with replication and recombination mutants are phenotypes that can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. To shed light on these intermediates, we searched for mutations that bypass the requirement of Srs2 in DNA repair without affecting HR. Remarkably, we isolated rad52-L264P, a novel allele of RAD52, a gene that encodes one of the most central recombination proteins in yeast. This mutation suppresses a broad spectrum of srs2Δ phenotypes in haploid cells, such as UV and γ-ray sensitivities as well as synthetic lethality with replication and recombination mutants, while it does not significantly affect Rad52 functions in HR and DNA repair. Extensive analysis of the genetic interactions between rad52-L264P and srs2Δ shows that rad52-L264P bypasses the requirement for Srs2 specifically for the prevention of toxic Rad51 filaments. Conversely, this Rad52 mutant cannot restore viability of srs2Δ cells that accumulate intertwined recombination intermediates which are normally processed by Srs2 post-synaptic functions. The avoidance of toxic Rad51 filaments by Rad52-L264P can be explained by a modification of its Rad51 filament mediator activity, as indicated by Chromatin immunoprecipitation and biochemical analysis. Remarkably, sensitivity to DNA damage of srs2Δ cells can also be overcome by stimulating Rad52 sumoylation through overexpression of the sumo-ligase SIZ2, or by replacing Rad52 by a Rad52-SUMO fusion protein. We propose that, like the rad52-L264P mutation, sumoylation modifies Rad52 activity thereby changing the properties of Rad51 filaments. This conclusion is strengthened by the finding that Rad52 is often associated with complete Rad51 filaments in vitro.  相似文献   

10.
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.  相似文献   

11.
Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination intermediates. To further address its biological roles and uncover new genetic interactions, we examined the consequences of overexpressing SRS2 as well as two helicase-dead mutants, srs2-K41A and srs2-K41R, in the collection of 4827 yeast haploid deletion mutants. We identified 274 genes affecting a large variety of cellular functions that are required for cell growth when SRS2 or its mutants are overexpressed. Further analysis of these interactions reveals that Srs2 acts independently of its helicase function at replication forks likely through its recruitment by the sumoylated PCNA replication clamp. This helicase-independent function is responsible for the negative interactions with DNA metabolism genes and for the toxicity of SRS2 overexpression in many of the diverse cellular pathways revealed in our screens.  相似文献   

12.
The Saccharomyces cerevisiae Srs2 UvrD DNA helicase controls genome integrity by preventing unscheduled recombination events. While Srs2 orthologues have been identified in prokaryotic and lower eukaryotic organisms, human orthologues of Srs2 have not been described so far. We found that the human F-box DNA helicase hFBH1 suppresses specific recombination defects of S. cerevisiae srs2 mutants, consistent with the finding that the helicase domain of hFBH1 is highly conserved with that of Srs2. Surprisingly, hFBH1 in the absence of SRS2 also suppresses the DNA damage sensitivity caused by inactivation of postreplication repair-dependent functions leading to PCNA ubiquitylation. The F-box domain of hFBH1, which is not present in Srs2, is crucial for hFBH1 functions in substituting for Srs2 and postreplication repair factors. Furthermore, our findings indicate that an intact F-box domain, acting as an SCF ubiquitin ligase, is required for the DNA damage-induced degradation of hFBH1 itself. Overall, our findings suggest that the hFBH1 helicase is a functional human orthologue of budding yeast Srs2 that also possesses self-regulation properties necessary to execute its recombination functions.  相似文献   

13.
Mutations in the genes encoding the BLM and WRN RecQ DNA helicases and the MRE11-RAD50-NBS1 complex lead to genome instability and cancer predisposition syndromes. The Saccharomyces cerevisiae Sgs1 RecQ helicase and the Mre11 protein, together with the Srs2 DNA helicase, prevent chromosome rearrangements and are implicated in the DNA damage checkpoint response and in DNA recombination. By searching for Srs2 physical interactors, we have identified Sgs1 and Mre11. We show that Srs2, Sgs1, and Mre11 form a large complex, likely together with yet unidentified proteins. This complex reorganizes into Srs2-Mre11 and Sgs1-Mre11 subcomplexes following DNA damage-induced activation of the Mec1 and Tel1 checkpoint kinases. The defects in subcomplex formation observed in mec1 and tel1 cells can be recapitulated in srs2-7AV mutants that are hypersensitive to intra-S DNA damage and are altered in the DNA damage-induced and Cdk1-dependent phosphorylation of Srs2. Altogether our observations indicate that Mec1- and Tel1-dependent checkpoint pathways modulate the functional interactions between Srs2, Sgs1, and Mre11 and that the Srs2 DNA helicase represents an important target of the Cdk1-mediated cellular response induced by DNA damage.  相似文献   

14.
The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.  相似文献   

15.
Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.  相似文献   

16.
Rad52-dependent homologous recombination (HR) is regulated by the antirecombinase activities of Srs2 and Rqh1/Sgs1 DNA helicases in fission yeast and budding yeast. Functional analysis of Srs2 in Schizosaccharomyces pombe led us to the discovery of Sws1, a novel HR protein with a SWIM-type Zn finger. Inactivation of Sws1 suppresses the genotoxic sensitivity of srs2Delta and rqh1Delta mutants and rescues the inviability of srs2Delta rqh1Delta cells. Sws1 functions at an early step of recombination in a pro-recombinogenic complex with Rlp1 and Rdl1, two RecA-like proteins that are most closely related to the human Rad51 paralogs XRCC2 and RAD51D, respectively. This finding indicates that the XRCC2-RAD51D complex is conserved in lower eukaryotes. A SWS1 homolog exists in human cells. It associates with RAD51D and ablating its expression reduces the number of RAD51 foci. These studies unveil a conserved pathway for the initiation and control of HR in eukaryotic cells.  相似文献   

17.
The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.  相似文献   

18.
RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants.  相似文献   

19.
The SRS2 gene of Saccharomyces cerevisiae encoding a 3'-->5' DNA helicase is part of the postreplication repair pathway and functions to ensure proper repair of DNA damage arising during DNA replication through pathways that do not involve homologous recombination. Through a synthetic gene array analysis, genes that are essential when Srs2 is absent have been identified. Among these are MRC1, TOF1, and CSM3, which mediate the intra-S checkpoint response. srs2 Delta mrc1 Delta synthetic lethality is due to inappropriate recombination, as the lethality can be suppressed by genetic elimination of homologous recombination. srs2 Delta mrc1 Delta synthetic lethality is dependent on the role of Mrc1 in DNA replication but independent of the role of Mrc1 in a DNA damage checkpoint response. mrc1 Delta, tof1 Delta and csm3 Delta mutants have sister chromatid cohesion defects, implicating sister chromatid cohesion established at the replication fork as an important factor in promoting repair of stalled replication forks through gap repair.  相似文献   

20.
RecQ helicases maintain genome stability and suppress tumors in higher eukaryotes through roles in replication and DNA repair. The yeast RecQ homolog Sgs1 interacts with Top3 topoisomerase and Rmi1. In vitro, Sgs1 binds to and branch migrates Holliday junctions (HJs) and the human RecQ homolog BLM, with Top3alpha, resolves synthetic double HJs in a noncrossover sense. Sgs1 suppresses crossovers during the homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Crossovers are associated with long gene conversion tracts, suggesting a model in which Sgs1 helicase catalyzes reverse branch migration and convergence of double HJs for noncrossover resolution by Top3. Consistent with this model, we show that allelic crossovers and gene conversion tract lengths are increased in sgs1Delta. However, crossover and tract length suppression was independent of Sgs1 helicase activity, which argues against helicase-dependent HJ convergence. HJs may converge passively by a "random walk," and Sgs1 may play a structural role in stimulating Top3-dependent resolution. In addition to the new helicase-independent functions for Sgs1 in crossover and tract length control, we define three new helicase-dependent functions, including the suppression of chromosome loss, chromosome missegregation, and synthetic lethality in srs2Delta. We propose that Sgs1 has helicase-dependent functions in replication and helicase-independent functions in DSB repair by HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号