首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative study of two modifications of enzymic reduction of ethyl N-{2-{4-[(2-oxo-cyclohexyl)methyl]phe- noxy}ethyl} carbamate (1), an insect juvenile hormone bioanalog, was performed using Saccharomyces cerevisiae in two bioreactors of different size, 250-ml shake-flask and 1-l fermenter. The two major products of this reduction were obtained in 45–49% (w/w) yields but with > 99% enantiomeric purity. Their absolute configurations were assigned as ethyl (1S,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (2a) and ethyl (1R,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (3a).  相似文献   

2.
Saccharomyces cerevisiae is the most widely used yeast in industrial/commercial food and beverage production and is even consumed as a nutritional supplement. Various cases of fungemia caused by this yeast species in severely debilitated traumatized or immune-deficient patients have been reported in recent years, suggesting that this species could be an opportunistic pathogen in such patients. To determine whether the industrial S. cerevisiae strains can be included in this virulent group of strains, we carried out a comparative study between clinical and industrial yeasts based on the various phenotypic traits associated with pathogenicity in two other yeast species (Candida albicans and Cryptococcus neoformans). The majority of the clinical isolates were found to secrete higher levels of protease and phospholipase, grow better at 42°C and show strong pseudohyphal growth relative to industrial yeasts. However three industrial yeast strains, one commercial wine strain, baker’s yeast and one commercial strain of S. cerevisiae (var. boulardii), were exceptions and based on their physiological traits these yeasts would appear to be related to clinical strains.  相似文献   

3.
The effect of killer strains of Saccharomyces cerevisiae on the growth of sensitive strains during must fermentation was studied by using a new method to monitor yeast populations. The capability of killer yeast strains to eliminate sensitive strains depends on the initial proportion of killer yeasts, the susceptibility of sensitive strains, and the treatment of the must. In sterile filtered must, an initial proportion of 2-6% of killer yeasts was responsible for protracted fermentation and suppression of isogenic sensitive strains. A more variable initial proportion was needed to get the same effect with non-isogenic strains. The suspended solids that remain in the must after cold-settling decreased killer toxin effect. The addition of bentonite to the must avoided protracted fermentation and the suppression of sensitive strains; however, the addition of yeast dietary nutrients with yeast cell walls did not, although it decreased fermentation lag.  相似文献   

4.

Background

A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae.

Results

A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked.

Conclusions

Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0032-9) contains supplementary material, which is available to authorized users.  相似文献   

5.
Summary A comparative study has been made of different laboratory and industrial wild-type strains ofSaccharomyces cerevisiae in relation to their flocculation behavior. All strains were inhibited by mannose and only one by maltose. In regard to the stability of these characters in the presence of proteases and high salt concentrations, a relevant degree of variation was found among the strains. This was to such an extent that it did not allow their inclusion in the Flol or NewFlo phenotypes. Genetic characterization of one wild-type strain revealed that the flocculation-governing gene was allelic toFLO1 found in genetic strains.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.  相似文献   

6.
In anoxic chemostat cultures of Saccharomyces cerevisiae ATCC 4126 and CBS 8066 grown in a medium containing yeast extract, a sharp increase in the steady-state residual glucose concentration occurred at relatively low dilution rates, contrary to the expected Monod kinetics. However, supplementation with vitamins and amino acids facilitated efficient glucose uptake. This enhanced requirement for growth factors under anoxic conditions and at high growth rates could explain the exceptionally high apparent k s values for S. cerevisiae reported in the literature.  相似文献   

7.
One hundred and fifteen Saccharomyces cerevisiae strains from Aglianico del Vulture, a red wine produced in Southern Italy, were characterized for the production of some secondary compounds involved in the aroma and taste of alcoholic beverages. The strains exhibited a uniform behaviour in the production levels of n-propanol, active amyl alcohol and ethyl acetate, whereas isobutanol, isoamyl alcohol and acetaldehyde were formed with a wide variability. Only five strains produced wines close to the reference Aglianico del Vulture wine for the traits considered. Of these, two strains were selected, underwent to tetrad analysis and the single spore cultures were tested in grape must fermentation. The progeny of one strain showed a significant metabolic variability, confirming the necessity to test starter cultures for the segregation of traits of technological interest. Our findings suggest the selection of specific strains for specific fermentations as a function of the vine variety characteristics in order to take the major advantage from the combination grape must/S. cerevisiae strain.  相似文献   

8.
Summary The growing demand for high quality products and the immense export potential that cacha?a represents, demonstrated especially during the past few years, have clearly indicated the necessity of establishing well-defined standards of quality, as well as effective means of controlling the process of production of this beverage. The objective of this study was the selection of S. cerevisiae yeast strains and the investigation of their influence on the kinetic parameters of fermentation. Ninety strains of S. cerevisiae isolated from distilleries of the state of Minas Gerais were evaluated with respect to the following parameters: flocculation capacity, production of H2S and kinetic parameters of fermentation. The UFMGA 905 strain was used as a reference because it presented desirable characteristics for the production of cacha?a. Five strains presented high specific sedimentation velocities (SSV), indicating a high flocculation capacity, and two did not produce H2S. The strains presented significant statistical differences for fermentation parameters: yield of ethanol; efficiency of substrate conversion to ethanol; ratio of substrate conversion to ethanol (Y p/s), to cells (Y x/s), to organic acids (Y ac/s), and to glycerol (Y g/s); and productivity. In general, the strains presented a good fermentative potential, with ethanol yields varying from 74.7 to 82.1% and an efficiency of 76.1–84.4%. All strains presented high productivities (4.6–6.6 g l−1 h−1), indicating that this parameter can be used in the selection of strains for the production of cacha?a.  相似文献   

9.
Arrangement of genes TRP1 and TRP3 of Saccharomyces cerevisiae strains   总被引:10,自引:0,他引:10  
The tryptophan biosynthetic genes TRP1 and TRP3 and partly also TRP2 and TRP4 have been compared by the technique of Southern hybridization and enzyme measurements in twelve wild isolates of Saccharomyces cerevisiae from natural sources of different continents, in the commonly used laboratory strain S. cerevisiae X2180-1A and in a Kluyveromyces marxianus strain. We could classify these strains into four groups, which did not correlate with their geographical distribution. In no case are the TRP3 and TRP1 genes fused as has been found in other ascomycetes. Two strains were found which, in contrast to strain X2180-1A, show derepression of gene TRP1. Two examples are discussed to demonstrate the usefulness of Southern hybridizations for the identification of closely related strains.Non-standard abbreviations InGP Indole-3-glycerolphosphate - PRA N(5-phosphoribosyl)-anthranilate  相似文献   

10.
Two wine strains of Saccharomyces cerevisiae, characterized by a different degree of copper resistance, were tested in grape must fermentation in the presence of different copper concentrations. The sensitive strain SN9 was strongly affected by copper concentration (32 ppm, (32 mg/l)), whereas the resistant strain SN41 exhibited a good growth activity in presence of 32 ppm of copper and only a reduced activity in presence of 320 ppm. The different strain fermentation performance in response to the copper addition corresponded to a different capability to accumulate copper inside the cells. Both strains exhibited the capacity to reduce the copper content in the final product, eventhough a significantly greater reducing activity was exerted by the resistant strain SN41, which was able to reduce by 90% the copper concentration in the final product and to accumulate the metal in great concentrations in the cells. As high concentrations of copper can be responsible for wine alterations, the selection of S. cerevisiae strains possessing high copper resistance and the ability to reduce the copper content of wine has a great technological interest, in particular for the fermentation of biological products. From the results obtained, the technique proposed is not only suitable for the assay of copper residues in must, wine and yeast cells, but it also offers the advantage of easy sample preparation and low detection limit in the ppb (g/l) range.  相似文献   

11.
A mutant in Saccharomyces cerevisiae required one hundred times more K+ than wild type for the same half maximal growth rate. Mutant cells and wild type cells grown at millimolar K+ did not show significant differences in Rb+ transport. In the mutant, a rapid K+ loss induced by azide or incubation (4 h) in K+-free medium decreased the Rb+ transport K m by one half; in the wild type, those treatments decreased the Rb+ K m twenty and one hundred times, respectively. Mutant and wild type did not show significant differences in Na+ transport and in the Na+ inhibition of Rb+ transport, either in normal-K+ cells or in K+-starved cells. The results suggest that either two systems or one system with two interacting sites mediate K+ transport in S. cerevisiae.Abbreviations YPD yeast-peptone-dextrose medium  相似文献   

12.
Invertase liberation from Saccharomyces cerevisiae was detected after application of series of rectangular millisecond electric pulses. Maximal yield (60% from the activity in crude extract) was achieved within 8 h after pulsation. As shown by staining SDS-PAGE for invertase activity, the main part of liberated enzyme is a high molecular weight periplasmic invertase.  相似文献   

13.
The origin of the Saccharomyces cerevisiae strains that are responsible for spontaneous grape must fermentation was investigated in a long-established industrial winery by means of two different approaches. First, seven selected components of the analytical profiles of the wines produced by 58 strains of S. cerevisiae isolated from different sites and phases of the production cycle of a Grechetto wine were subjected to Principal Components Analysis. Secondly, the same S. cerevisiae isolates underwent PCR fingerprinting by means of delta primers. The results obtained by both methods demonstrate unequivocally that under real vinification conditions, the S. cerevisiae strains colonising the winery surfaces are the ones that carry out the natural must fermentation.  相似文献   

14.
15.
Genitourinary infections caused by non-Candida yeasts are uncommon, and especially due to Saccharomyces cerevisiae. We describe the cases of two adult females with vulvovaginal infections caused by itraconazole-resistant S. cerevisiae who made a full recovery after oral fluconazole therapy. We also provide a concise review of recently published studies on this topic.  相似文献   

16.
Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare.The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus.

Subjects and methods

Vaginal samples were collected from a total of262 (asymptomaticandsymptomatic) women with vaginitis attending the centre of family planning of General hospital ofPiraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae.

Results

A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker’s yeast.

Conclusions

Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy.  相似文献   

17.
Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.  相似文献   

18.
We characterized a sucrose-tolerant mutant of Saccharomyces cerevisiae, S22, that produces about four times as much acetate as the wild-type strain K9. We monitored the concentration of extracellular acetate during cultivation, and compared the gene expression ratios of S22 with those of K9 using DNA microarray. We propose that the sucrose tolerance of S22 may be related to the overexpression of the ENA1, ENA2, and ENA5 genes and some cell wall mannoprotein genes, and that the high acetate productivity of S22 is related to the overexpression of the ALD4 gene and oxidative phosphorylation genes.  相似文献   

19.
Saccharomyces cerevisiae which cannot utilize lysine as a sole nitrogen source is shown to metabolize a Lysine 3 Cr3+ (1:1) complex synthesized, as a combined nitrogen and carbon source. It induces rapid uptake of lysine and prevents loss of viability, in contrast with free lysine. That complexation with trivalent chromium has the effect of profoundly influencing intracellular distribution and metabolism of the liganded amino acid is demonstrated.  相似文献   

20.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号