首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Surfactant protein-A (SP-A) plays multiple roles in pulmonary host defense, including stimulating bacterial phagocytosis by innate immune cells. Previously, SP-A was shown to interact with complement protein C1q. Our goal was to further characterize this interaction and elucidate its functional consequences. Radiolabeled SP-A bound solid-phase C1q but not other complement proteins tested. The lectin activity of SP-A was not required for binding to C1q. Because C1q is involved in bacterial clearance but alone does not efficiently enhance the phagocytosis of most bacteria, we hypothesize that SP-A enhances phagocytosis of C1q-coated antigens. SP-A enhanced by sixfold the percentage of rat alveolar macrophages in suspension that phagocytosed C1q-coated fluorescent beads. Furthermore, uptake of C1q-coated beads was enhanced when either beads or alveolar macrophages were preincubated with SP-A. In contrast, SP-A had no significant effect on the uptake of C1q-coated beads by alveolar macrophages adhered to plastic slides. We conclude that SP-A may serve a protective role in the lung by interacting with C1q to enhance the clearance of foreign particles.  相似文献   

2.
We have investigated the interaction of C1q, a subunit of the first component of complement, with human monocytes and culture-derived macrophages. Adherence of these mononuclear phagocytes to surfaces coated with C1q induced a marked enhancement of the phagocytosis of sheep erythrocytes opsonized with IgG anti-Forssman antibody (EA-IgG). This C1q-mediated enhancement of phagocytosis was dose dependent, and was specifically blocked by pretreatment of the C1q-coated surfaces with F(ab')2 anti-C1q. The augmentation of FcR-mediated phagocytosis by C1q was determined to be a result of the interaction between the C1q and the phagocytic effector cell, and was not due to interaction between the surface-bound C1q and the EA-IgG. Neither resting nor N-formyl-methionyl-leucyl-phenylalanine-stimulated polymorphonuclear leukocytes were induced by C1q to increase FcR-mediated phagocytosis. Experiments conducted with purified fragments of C1q suggest that the C1q phagocytosis enhancement signal resides in the collagen-like tail domain of the molecule. This region is the same portion of the molecule previously shown to interact with the cell surface C1q receptor. Native type I collagen was unable to enhance FcR-mediated phagocytosis by mononuclear phagocytes. It has been demonstrated that C1q can be localized to areas of inflammation, and additionally C1q can be secreted by macrophages in culture. In view of these findings and the results of our present study, we hypothesize that C1q could provide local, direct, and non-opsonic enhancement of phagocytosis by mononuclear phagocytes in areas of infection and inflammation.  相似文献   

3.
Surfactant protein (SP)-A and SP-D, immunoglobulins, and complement all modulate inflammation within the lung by regulating pathogen clearance. For example, SP-A binds to and opsonizes a variety of bacteria and viruses, thereby enhancing their phagocytosis by innate immune cells such as alveolar macrophages. Immunoglobulins, which bind to antigen and facilitate Fc receptor-mediated phagocytosis, can also activate complement, a family of soluble proteins with multiple host defense functions. Previous studies showed that SP-A and complement protein C1q interact. Since complement protein C1q binds to IgG and IgM immune complexes, the hypothesis tested in this study was that SP-A, which is structurally homologous to C1q, also binds to IgG and affects its functions. SP-A binds to the Fc, rather than the Fab, region of IgG. Binding is calcium dependent but not inhibited by saccharides known to bind to SP-A's carbohydrate recognition domain. The binding of SP-A does not inhibit the formation of immune complexes or the binding of IgG to C1q. In contrast, SP-A enhances the uptake of IgG-coated erythrocytes, suggesting that SP-A might be influencing Fc receptor-mediated uptake. In summary, this study shows a novel interaction between SP-A and IgG and a functional consequence of the binding.  相似文献   

4.
5.
We investigated whether C1q, a subunit of the first component of C, could modulate human peripheral blood monocyte-mediated phagocytosis of Cryptococcus neoformans (CN). Adherence of monocytes to C1q-coated surfaces induced a significant enhancement of ingestion of CN blastospores that had been opsonized with specific anticapsular IgG (IgG-CN). Additionally, C1q enhanced the monocyte-mediated phagocytosis of CN opsonized with C (CN-absorbed, nonimmune, normal human serum; C-CN). Ingestion of IgG- and C-CN by control and C1q-stimulated monocytes was maximal by 1 h of incubation. The monocyte-mediated enhancement of phagocytosis caused by C1q was paralleled by a proportionate increase in fungicidal activity, an effect which was maximal by 3 h of incubation. Human serum albumin-adherent, control monocytes exhibited only a low level of killing after 3 h of incubation. C1q enhancement was blocked by preincubation of the surfaces with a goat, polyclonal F(ab')2 anti-C1q. This study describes a new cellular function for the cell surface C1q receptor: the enhancement of phagocytosis of a pathogenic organism by monocytes.  相似文献   

6.
Chlamydiae are intracellular bacterial pathogens that infect mucosal surfaces, i.e., the epithelium of the lung, genital tract, and conjunctiva of the eye, as well as alveolar macrophages. In the present study, we show that pulmonary surfactant protein A (SP-A) and surfactant protein D (SP-D), lung collectins involved in innate host defense, enhance the phagocytosis of Chlamydia pneumoniae and Chlamydia trachomatis by THP-1 cells, a human monocyte/macrophage cell line. We also show that SP-A is able to aggregate both C. trachomatis and C. pneumoniae but that SP-D only aggregates C. pneumoniae. In addition, we found that after phagocytosis in the presence of SP-A, the number of viable C. trachomatis pathogens in the THP-1 cells 48 h later was increased approximately 3.5-fold. These findings suggest that SP-A and SP-D interact with chlamydial pathogens and enhance their phagocytosis into macrophages. In addition, the chlamydial pathogens internalized in the presence of collectins are able to grow and replicate in the THP-1 cells after phagocytosis.  相似文献   

7.
Inhaled particulates and microbes are continually cleared by a complex array of lung innate immune determinants, including alveolar macrophages (AMs). AMs are unique cells with an enhanced capacity for phagocytosis that is due, in part, to increased activity of the macrophage mannose receptor (MR), a pattern recognition receptor for various microorganisms. The local factors that "shape" AM function are not well understood. Surfactant protein A (SP-A), a major component of lung surfactant, participates in the innate immune response and can enhance phagocytosis. Here we show that SP-A selectively enhances MR expression on human monocyte-derived macrophages, a process involving both the attached sugars and collagen-like domain of SP-A. The newly expressed MR is functional. Monocyte-derived macrophages on an SP-A substrate demonstrated enhanced pinocytosis of mannose BSA and phagocytosis of Mycobacterium tuberculosis lipoarabinomannan-coated microspheres. The newly expressed MR likely came from intracellular pools because: 1) up-regulation of the MR by SP-A occurred by 1 h, 2) new protein synthesis was not necessary for MR up-regulation, and 3) pinocytosis of mannose BSA via MR recycling was increased. AMs from SP-A(-/-) mice have reduced MR expression relative to SP-A(+/+). SP-A up-regulation of MR activity provides a mechanism for enhanced phagocytosis of microbes by AMs, thereby enhancing lung host defense against extracellular pathogens or, paradoxically, enhancing the potential for intracellular pathogens to enter their intracellular niche. SP-A contributes to the alternative activation state of the AM in the lung.  相似文献   

8.
Pulmonary surfactant proteins A (SP-A) and D (SP-D), members of the collectin family, play important roles in the innate immune system of the lung. Here, we show that SP-A but not SP-D augmented phagocytosis of Streptococcus pneumoniae by alveolar macrophages, independent of its binding to the bacteria. Analysis of the SP-A/SP-D chimeras, in which progressively longer carboxyl-terminal regions of SP-A were replaced with the corresponding SP-D regions, has revealed that the SP-D region Gly(346)-Phe(355) can be substituted for the SP-A region Leu(219)-Phe(228) without altering the SP-A activity of enhancing the phagocytosis and that the SP-A region Cys(204)-Cys(218) is required for the SP-A-mediated phagocytosis. Acetylated low density lipoprotein significantly reduced the SP-A-stimulated uptake of the bacteria. SP-A failed to enhance the phagocytosis of S. pneumoniae by alveolar macrophages derived from scavenger receptor A (SR-A)-deficient mice, demonstrating that SP-A augments SRA-mediated phagocytosis. Preincubation of macrophages with SP-A at 37 degrees C but not at 4 degrees C stimulated the phagocytosis. The SP-A-mediated enhanced phagocytosis was not inhibited by the presence of cycloheximide. SP-A increased cell surface localization of SR-A that was inhibitable by apigenin, a casein kinase 2 (CK2) inhibitor. SP-A-treated macrophages exhibited significantly greater binding of acetylated low density lipoprotein than nontreated cells. The SP-A-stimulated phagocytosis was also abolished by apigenin. In addition, SP-A stimulated CK2 activity. These results demonstrate that SP-A enhances the phagocytosis of S. pneumoniae by alveolar macrophages through a CK2-dependent increase of cell surface SR-A localization. This study reveals a novel mechanism of bacterial clearance by alveolar macrophages.  相似文献   

9.
The phagocytosis of apoptotic inflammatory cells by alveolar macrophages (AMs) is a key component of inflammation resolution within the air space. Surfactant protein A (SP-A) has been shown to stimulate the phagocytosis of apoptotic neutrophils (PMNs) by normal AMs. We hypothesized that SP-A promotes the resolution of alveolar inflammation by enhancing apoptotic PMN phagocytosis and anti-inflammatory cytokine release by inflammatory AMs. Using an LPS lung inflammation model, we determined that SP-A stimulates the phagocytosis of apoptotic PMNs threefold by normal AMs and AMs isolated after LPS injury. Furthermore, SP-A enhances transforming growth factor-beta1 (TGF-beta1) release from both AM populations. Inflammatory AMs release twofold more TGF-beta1 in culture than do normal AMs. SP-A and apoptotic PMNs together stimulate TGF-beta1 release equivalently from normal and inflammatory cultured AMs (330% of unstimulated release by normal AMs). In summary, SP-A enhances apoptotic PMN uptake, stimulates AM TGF-beta1 release, and modulates the amount of TGF-beta1 released when AMs phagocytose apoptotic PMNs. These findings support the hypothesis that SP-A promotes the resolution of alveolar inflammation.  相似文献   

10.
Pulmonary surfactant isolated from bronchoalveolar lavage fluid of rat lung contained a high content of surfactant protein A (SP-A) in starved for 2 days compared to fed controls, but this phenomena returned to baseline following more than 4 days starvation. As determined by immunoperoxidase staining of lung sections using SP-A antibody, SP-A could be consistently observed in nonciliated bronchiolar (Clara) cells, alveolar type II cells and some alveolar macrophages (AM). Fc receptor-mediated phagocytosis of AM was enhanced by SP-A, which was dependent on the dosis and reached a maximum at 10 micrograms of SP-A/ml. Antibody to SP-A completely inhibited the enhanced response of phagocytosis. When exposed AM subpopulations, separated into four fractions (I, II, III and IV) by discontinuous Percoll gradient, to SP-A or pulmonary surfactant prepared from rats fed and starved for 2 days enhanced their phagocytic activity in high dense cells (III and IV), particularly to SP-A and pulmonary surfactant from rats starved for 2 days. Whereas little change in lower dense fractions (I and II) were seen in all exposures except for SP-A that enhanced the cells of fraction II. These results supported the concept that pulmonary surfactant and its apoprotein, SP-A, are a factor to regulate lung defense system including activation of AM that undergo different processes following starvation.  相似文献   

11.
C1q and members of the defense collagen family are pattern recognition molecules that bind to pathogens and apoptotic cells and trigger a rapid enhancement of phagocytic activity. Candidate phagocytic cell receptors responsible for the enhancement of phagocytosis by defense collagens have been proposed but not yet discerned. Engagement of phagocyte surface-associated calreticulin in complex with the large endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP/CD91), by defense collagens has been suggested as one mechanism governing enhanced ingestion of C1q-coated apoptotic cells. To investigate this possibility, macrophages were derived from transgenic mice genetically deficient in LRP resulting from tissue-specific loxP/Cre recombination. LRP-deficient macrophages were impaired in their ability to ingest beads coated with an LRP ligand when compared with LRP-expressing macrophages, confirming for the first time that LRP participates in phagocytosis. When LRP-deficient and -expressing macrophages were plated on C1q-coated slides, they demonstrated equivalently enhanced phagocytosis of sheep RBC suboptimally opsonized with IgG or complement, compared with cells plated on control protein. In addition, LRP-deficient and -expressing macrophages ingested equivalent numbers of apoptotic Jurkat cells in the presence and absence of serum. Both LRP-deficient and -expressing macrophages ingested fewer apoptotic cells when incubated in the presence of C1q-deficient serum compared with normal mouse serum, and the addition of purified C1q reconstituted uptake to control serum levels. These studies demonstrate a direct contribution of LRP to phagocytosis and indicate that LRP is not required for the C1q-triggered enhancement of phagocytosis, suggesting that other, still undefined, receptor(s) exist to mediate this important innate immune function.  相似文献   

12.
Surfactant protein A regulates complement activation.   总被引:4,自引:0,他引:4  
Complement proteins aid in the recognition and clearance of pathogens from the body. C1, the first protein of the classical pathway of complement activation, is a calcium-dependent complex of one molecule of C1q and two molecules each of C1r and C1s, the serine proteases that cleave complement proteins. Upon binding of C1q to Ag-bound IgG or IgM, C1r and C1s are sequentially activated and initiate the classical pathway of complement. Because of structural and functional similarities between C1q and members of the collectin family of proteins, including pulmonary surfactant protein A (SP-A), we hypothesized that SP-A may interact with and regulate proteins of the complement system. Previously, SP-A was shown to bind to C1q, but the functional significance of this interaction has not been investigated. Binding studies confirmed that SP-A binds directly to C1q, but only weakly to intact C1. Further investigation revealed that the binding of SP-A to C1q prevents the association of C1q with C1r and C1s, and therefore the formation of the active C1 complex required for classical pathway activation. This finding suggests that SP-A may share a common binding site for C1r and C1s or Clq. SP-A also prevented C1q and C1 from binding to immune complexes. Furthermore, SP-A blocked the ability of C1q to restore classical pathway activity to C1q-depleted serum. SP-A may down-regulate complement activity through its association with C1q. We hypothesize that SP-A may serve a protective role in the lung by preventing C1q-mediated complement activation and inflammation along the delicate alveolar epithelium.  相似文献   

13.
C1q, mannose-binding lectin (MBL), and pulmonary surfactant protein A (SPA) interact with human monocytes and macrophages, resulting in the enhancement of phagocytosis of suboptimally opsonized targets. mAbs that recognize a cell surface molecule of 126,000 Mr, designated C1qRP, have been shown to inhibit C1q- and MBL-mediated enhancement of phagocytosis. Similar inhibition of the SPA-mediated enhancement of phagocytosis by these mAbs now suggests that C1qRP is a common component of a receptor for these macromolecules. Ligation of human monocytes with immobilized R3, a IgM mAb recognizing C1qRP, also triggers enhanced phagocytic capacity of these cells in the absence of ligand, verifying the direct involvement of this polypeptide in the regulation of phagocytosis. While the cDNA for C1qRP encodes a 631 amino acid membrane protein, Chinese hamster ovary cells transfected with the cDNA of the C1qRP coding region express a surface glycoprotein with the identical 126,000 Mr in SDS-PAGE as the native C1qRP. Use of glycosylation inhibitors, cleavage of the mature C1qRP with specific glycosidases, and in vitro translation of C1qRP cDNA demonstrated that both posttranslational glycosylation and the nature of the amino acid sequence of the protein contribute to the difference between its predicted m.w. and its migration on SDS-PAGE. These results verify that the cDNA cloned codes for the mature C1qRP, that C1qRP contains a relatively high degree of O-linked glycoslyation, and that C1qRP cross-linked directly by monoclonal anti-C1qRP or engaged as a result of cell surface ligation of SPA, as well as C1q and MBL, enhances phagocytosis.  相似文献   

14.
Pulmonary surfactant protein A (SP-A) has been shown to act as an opsonin in the phagocytosis of viruses by alveolar macrophages. To determine whether SP-A binds to viral proteins and which part of the SP-A molecule is involved in this interaction, binding studies were undertaken. SP-A was labeled with fluorescein isothiocyanate, and its binding to herpes simplex virus type 1-infected HEp-2 cells, as a model for virus-infected cells in general, was studied using flow cytometry. The binding of SP-A to virus-infected cells was saturable, reversible, and both time- and concentration-dependent, reaching a maximal level after 30 min at an SP-A concentration of 10 micrograms/ml. An approximately 4-fold increase in binding of SP-A to infected cells over control cells was observed. Yeast mannan, a mannose homopolysaccharide, did not influence the binding. However, heparin inhibited binding of SP-A in a concentration-dependent manner. In addition, heparin could also dissociate cell-bound SP-A, indicating that polyanionic oligosaccharides are involved in the binding of SP-A to virus-infected cells. Deglycosylated SP-A, obtained by digestion with N-glycosidase F, did not bind to infected cells. Heparin or deglycosylation of SP-A had no effect on the stimulation of alveolar macrophages by SP-A. It is concluded that the carbohydrate moiety of SP-A is involved in the recognition of viruses by SP-A and may play a role in the antiviral defenses of the lung.  相似文献   

15.
Mannan-binding lectin (MBL) constitutes an important part of the human innate immune defense system. It has been shown to mediate the activation of complement upon binding to specific microbial carbohydrate motifs, to directly opsonize organisms, and to enhance the phagocytosis of targets suboptimally opsonized with IgG or complement components C3b or C4b. This enhancement of phagocytic activity induced by MBL and other molecules that contain a collagen-like region contiguous with a pattern recognition domain is mediated by a 126,000 M(r) surface glycoprotein, designated C1qR(P). Although it has been known that the collagen-like domain of these "defense collagens" contains the interaction site(s) that triggers this enhancement of uptake, the specific interaction site has not been identified. To address this issue, wild type and mutant MBL constructs were generated, inserted into baculovirus, expressed in Sf9 cells, and the recombinant MBL (rMBL) proteins purified by mannan affinity chromatography. The effect of wild type and mutant rMBL on the phagocytosis of targets suboptimally opsonized with IgG or with IgM and C4b by human peripheral blood monocytes was then assessed. Two mutants, one of which has five GXY triplets deleted below the kink region of MBL and the other one having only two of the GXY triplets deleted below the kink, failed to enhance phagocytosis, suggesting the importance of the specific sequence GEKGEP in stimulating phagocytic activity. Similar sequences were detected in other defense collagens, implicating the consensus motif GE(K/Q/R)GEP as critical in mediating the enhancement of phagocytosis through C1qR(P.) Clarification of specific ligand-C1qR(P) interactions should facilitate the investigation of the signal transduction processes involved in the cell activation, as well as provide the basis for the design of specific modulators of the functions mediated by this receptor.  相似文献   

16.
Type II cells and macrophages are the major cells involved in the alveolar clearance and catabolism of surfactant. We measured type II cell and macrophage contributions to the catabolism of saturated phosphatidylcholine and surfactant protein A (SP-A) in mice. We used intratracheally administered SP-A labeled with residualizing (125)I-dilactitol-tyramine, radiolabeled dipalmitoylphosphatidylcholine ([(3)H]DPPC), and its degradation-resistant analog [(14)C]DPPC-ether. At 15 min and 7, 19, 29, and 48 h after intratracheal injection, the mice were killed; alveolar lavage was then performed to recover macrophages and surfactant. Type II cells and macrophages not recovered by the lavage were subsequently isolated by enzymatic digestion of the lung. Radioactivity was measured in total lung, lavage fluid macrophages, alveolar washes, type II cells, and lung digest macrophages. Approximately equal amounts of (125)I-dilactitol-tyramine-SP-A and [(14)C]DPPC-ether associated with the macrophages (lavage fluid plus lung digest) and type II cells when corrected for the efficiency of type II cell isolation. Eighty percent of the macrophage-associated radiolabel was recovered from lung digest macrophages. We conclude that macrophages and type II cells contribute equally to saturated phosphatidylcholine and SP-A catabolism in mice.  相似文献   

17.
Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A) contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99). However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/-) and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of pulmonary host defense.  相似文献   

18.
Surfactant protein A (SP-A) is an innate immune molecule that binds foreign organisms that invade the lungs and targets them for phagocytic clearance by the resident pulmonary phagocyte, the alveolar macrophage (AM). We hypothesized that SP-A binds to and enhances macrophage uptake of other nonself particles, specifically apoptotic polymorphonuclear neutrophils (PMNs). PMNs are recruited into the lungs during inflammation, but as inflammation is resolved, PMNs undergo apoptosis and are phagocytosed by AMs. We determined that SP-A increases AM phagocytosis of apoptotic PMNs 280 +/- 62% above the no protein control value. The increase is dose dependent, and heat-treated SP-A still enhanced uptake, whereas deglycosylated SP-A had significantly diminished ability to enhance phagocytosis. Surfactant protein D also increased phagocytosis of apoptotic PMNs by approximately 125%. However, other proteins that are structurally homologous to SP-A, mannose-binding lectin and complement protein 1q, did not. SP-A enhances phagocytosis via an opsonization-dependent mechanism and binds apoptotic PMNs approximately 4-fold more than viable PMNs. Also, binding of SP-A to apoptotic PMNs does not appear to involve SP-A's lectin domain. These data suggest that the pulmonary collectins SP-A and SP-D facilitate the resolution of inflammation by accelerating apoptotic PMN clearance.  相似文献   

19.
Wang G  Myers C  Mikerov A  Floros J 《Biochemistry》2007,46(28):8425-8435
Four "core" amino acid differences within the collagen-like domain distinguish the human surfactant protein A1 (SP-A1) variants from the SP-A2 variants. One of these, cysteine 85 that could form intermolecular disulfide bonds, is present in SP-A1 (Cys85) and absent in SP-A2 (Arg85). We hypothesized that residue 85 affects both the structure and function of SP-A1 and SP-A2 variants. To test this, wild-type (WT) variants, 6A2 of SP-A1 and 1A0 of SP-A2, and their mutants (6A2(C85R) and 1A0(R85C)) were generated and studied. We found the following: (1) Residue 85 affected the binding ability to mannose and the oligomerization pattern of SP-As. The 1A0(R85C) and 6A2(C85R) patterns were similar and/or resembled those of WT 6A2 and 1A0, respectively. (2) Both SP-A WT and mutants differentially induced rough LPS and Pseudomonas aeruginosa aggregation in the following order: 1A0 > 6A2 > 6A2(C85R) > 1A0(R85C) for Re-LPS aggregation and 1A0 > 6A2 = 6A2(C85R) = 1A0(R85C) for bacterial aggregation. (3) SP-A WT and mutants enhanced phagocytosis of P. aeruginosa by rat alveolar macrophages. Their phagocytic index order was 6A2(C85R) > 1A0 > 6A2 = 1A0(R85C). The activity of mutant 1A0(C85R) was significantly lower than WT 1A0 but similar to 6A2. Compared to WT 6A2, the 6A2(C85R) mutant exhibited a significantly higher activity. These results indicate that the SP-A variant/mutant with Arg85 exhibits a higher ability to enhance bacterial phagocytosis than that with Cys85. Residue 85 plays an important role in the structure and function of SP-A and is a major factor for the differences between SP-A1 and SP-A2 variants.  相似文献   

20.
In the past several years, it has been demonstrated that plasma fibronectin (Fn) binds to the C1q subunit of the complement system. The effect of Fn on the processing of immune complexes containing C1q and C3b by human peripheral blood monocytes was investigated. Preincubation of monocytes with Fn causes a significant increase in attachment of sheep erythrocytes coated with IgM and C1q (EIg-MC1q), but does not mediate their ingestion. EIg-MC1q attach to the Fn-treated monocytes via the C1q receptor because Fab anti-Fn antibodies do not inhibit their attachment to the monocytes. In addition, Fn-treated monocytes exhibit no change in C1q receptor number or affinity compared with monocytes treated with buffer. Fn mediates the phagocytosis of C3b/bi-coated particles, and C1q can enhance this process in two ways. First, phagocytosis of particles bearing C3b/bi and Fn is enhanced by the presence of C1q on the immune complex. Second, monocytes on Fn-coated surfaces ingest more particles if they are coated with both C3b/bi and C1q, compared with particles coated with either C3b/bi or C1q alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号