首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Necrotic death pathway in Fas receptor signaling   总被引:12,自引:0,他引:12  
A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD). This cell death process is not accompanied by caspase activation, but by necrotic morphological changes. Here, we show that the death effector domain of FADD is responsible for the FADD-mediated necrotic pathway. This process was accompanied by a loss of mitochondrial transmembrane potential (DeltaPsim), but not by the release of cytochrome c from mitochondria. Pyrrolidine dithiocarbamate, a metal chelator and antioxidant, efficiently inhibited the FADD-induced reduction of DeltaPsim and necrotic cell death. When human Jurkat, or its transformants, expressing mouse Fas were treated with Fas ligand or anti-mouse Fas antibodies, the cells died, showing characteristics of apoptosis. A broad caspase inhibitor (z-VAD-fmk) blocked the apoptotic morphological changes and the release of cytochrome c. However, the cells still died, and this cell death process was accompanied by a strong reduction in DeltaPsim, as well as necrotic morphological changes. The presence of z-VAD-fmk and pyrrolidine dithiocarbamate together blocked cell death, suggesting that both apoptotic and necrotic pathways can be activated through the Fas death receptor.  相似文献   

2.
Ectopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC's and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC's. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells.  相似文献   

3.
Tumor necrosis factor-alpha (TNFalpha) mediates cytochrome c release from mitochondria, loss of mitochondrial membrane potential (DeltaPsim) and apoptosis in sensitive leukemic cells. In the present study, by using the human leukemic U937 cell line, we demonstrate that the cytochrome c release is caspase-8-dependent and can be blocked by an inhibitor of caspase-8, Z-Ile-Glu (OMe)-Thr-Asp(OMe)-fluoromethyl ketone (Z-IETD.fmk), or a pan caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD.fmk). However, TNFalpha-mediated loss of DeltaPsim was not inhibited by caspase inhibitors. The apoptotic process was blocked by either Z-IETD.fmk or Z-VAD.fmk in cells with lower DeltaPsim. U937 cells with stable transfection of the cellular inhibitor of apoptosis protein 1 (c-IAP1) are resistant to TNFalpha-induced activation of caspases, Bid cleavage, cytochrome c release and DeltaPsim collapse. In addition, both c-IAP1 and XIAP were not up-regulated upon prolonged exposure to TNFalpha. In contrast, there was a caspase-dependent cleavage of XIAP, but not c-IAP1, during treatment with TNFalpha for 7 days. These results demonstrate that c-IAP1 blocks TNFalpha signaling at a level controlling both activation of caspase-8 and a signal to cause loss of DeltaPsim. The sensitive U937 cell line failed to acquire resistance and gain a self-protecting advantage against apoptosis, upon induction of c-IAP1 expression.  相似文献   

4.
Yin XM 《Cell research》2000,10(3):161-167
Two major apoptosis pathways have been defined in mammalian cells,the Fas/TNF-R1 death receptor pathway and the mitochondria pathway.The Bcl-2 family proteins consist of both anti-apoptosis and pro-apoptosis members that regulate apoptosis,mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events.However,death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly,bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins.Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals.Activated Bid is translocated to mitochondria and induces cytochrome c release,which in turn activates downstream caspases.Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.  相似文献   

5.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

6.
Loss of Bid confers clonogenic survival to granzyme B-treated cells, however the exact role of Bid-induced mitochondrial damage--upstream or downstream of caspases--remains controversial. Here we show that direct cleavage of Bid by granzyme B, but not caspases, was required for granzyme B-induced apoptosis. Release of cytochrome c and SMAC, but not AIF or endonuclease G, occurred in the absence of caspase activity and correlated with the onset of apoptosis and loss of clonogenic potential. Loss of mitochondrial trans-membrane potential (DeltaPsim) was also caspase independent, however if caspase activity was blocked the mitochondria regenerated their DeltaPsim. Loss of DeltaPsim was not required for rapid granzyme B-induced apoptosis and regeneration of DeltaPsim following cytochrome c release did not confer clonogenic survival. This functional dissociation of cytochrome c and SMAC release from loss of DeltaPsim demonstrates the essential contribution of Bid upstream of caspase activation during granzyme B-induced apoptosis.  相似文献   

7.
Jurkat leukemic T cells are highly sensitive to the extrinsic pathways of apoptosis induced via the death receptor Fas or tumor necrosis factor-related apoptosis-inducing ligand as well as to the intrinsic/mitochondrial pathways of death induced by VP-16 or staurosporin. We report here that clonal Jurkat cell lines selected for resistance to Fas-induced apoptosis were cross-resistant to VP-16 or staurosporin. Each of the apoptotic pathways was blocked at an apical phase, where common regulators of apoptosis have not yet been defined. The Fas pathway was blocked at the level of caspase-8, whereas the intrinsic pathway was blocked at the mitochondria. No processing or activity of caspases was detected in resistant cells in response to either Fas-cross-linking or VP-16 treatment. Also, no apoptosis-associated alterations in the mitochondrial inner membrane, outer membrane, or matrix were detected in resistant Jurkat cells treated with VP-16. Thus, no changes in permeability transition, loss in inner membrane cardiolipin, generation of reactive oxygen species, or release of cytochrome c were observed in resistant cells treated with VP-16. Further, unlike purified mitochondria from wild type cells, those obtained from resistant cells did not release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. These results identify a defect in mitochondria ability to release intermembrane proteins in response to Bid or Bax as a mechanism of resistance to chemotherapeuetic drugs. Further, the selection of VP-16-resistant mitochondria via elimination of Fas-susceptible cells may suggest the existence of a shared regulatory component between the extrinsic and intrinsic pathways of apoptosis.  相似文献   

8.
We have previously shown that Bax translocation was crucial in TNFalpha or etoposide-induced apoptosis. Overexpression of Bax sensitized chronic myeloid leukemic K562 cells to etoposide-induced apoptosis. Treatment with TNF-related apoptosis-inducing ligand (TRAIL) induces a loss of mitochondrial membrane potential (DeltaPsim), cytochrome c release from mitochondria, activation of caspases-8, -9, and -3, and cleavage of Bid in the K562 cell line. Bax failed to sensitize K562 cells to TRAIL-induced apoptosis. TRAIL did not induce Bax expression and/or translocation from cytosol to mitochondria in the K562 cell line. However, 100 microM Z-VAD.fmk, a pan caspase inhibitor, completely blocked TRAIL-initiated mitochondrial alterations and cleavages of caspases and Bid. We propose that TRAIL-induced apoptosis in K562 cells is via Type I apoptotic signal pathway. Bax translocation is not essential for TRAIL-induced cytochrome c release and DeltaPsim collapse in the Type I cells.  相似文献   

9.
Mitochondrial outer membrane permeabilization and cytochrome c release promote caspase activation and execution of apoptosis through cleavage of specific caspase substrates in the cell. Among the first targets of activated caspases are the permeabilized mitochondria themselves, leading to disruption of electron transport, loss of mitochondrial transmembrane potential (DeltaPsim), decline in ATP levels, production of reactive oxygen species (ROS), and loss of mitochondrial structural integrity. Here, we identify NDUFS1, the 75 kDa subunit of respiratory complex I, as a critical caspase substrate in the mitochondria. Cells expressing a noncleavable mutant of p75 sustain DeltaPsim and ATP levels during apoptosis, and ROS production in response to apoptotic stimuli is dampened. While cytochrome c release and DNA fragmentation are unaffected by the noncleavable p75 mutant, mitochondrial morphology of dying cells is maintained, and loss of plasma membrane integrity is delayed. Therefore, caspase cleavage of NDUFS1 is required for several mitochondrial changes associated with apoptosis.  相似文献   

10.
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death.  相似文献   

11.
Cytochrome c is thought to play an important role in the initiation of apoptosis following its release from mitochondria. It is controversial whether such release is also involved in caspase activation and apoptotic cell death after ligation of the cell surface molecule Fas. We addressed this issue by investigating cells from the human cell lines Jurkat and SKW6 which had been treated with the inhibitor of the mitochondrial F0/F1-ATPase, oligomycin. Oligomycin-treatment led, over a wide range of concentrations, to ATP-depletion and, at similar concentrations, abrogated the appearance of caspase-3-like activity caused by stauroporine. Electroporation of cytochrome c protein into intact cells induced caspase activation in both cell lines and significant nuclear apoptosis in Jurkat cells. In ATP-depleted cells, electroporation of cytochrome c induced neither caspase activation nor nuclear fragmentation. Fas-induced caspase activation and nuclear apoptosis, however, were unaffected by the depletion of ATP. Thus, cytochrome c is unlikely to be an important factor in Fas-induced cell death.  相似文献   

12.
Apoptosis is mediated by members of the caspase family of proteases which can be activated by release of mitochondrial cytochrome c. Additional members of the caspase family are activated at the cell surface in response to direct stimulus from the external environment such as by activation of the Fas receptor. It has been suggested that these upstream caspases directly activate the downstream caspases which would obviate a role for cytochrome c in apoptosis induced by the Fas receptor. We demonstrate that cytochrome c is released from mitochondria of Jurkat cells in response to both staurosporine and an agonistic anti-Fas antibody and that only the latter is inhibited by the caspase inhibitor z-VAD-FMK. This suggests that an upstream caspase such as caspase-8 is required for the Fas-mediated release of mitochondrial cytochrome c. The protein phosphatase inhibitor calyculin A prevented cytochrome c release and apoptosis induced by both agents, suggesting that release of cytochrome c is required in both models. Zinc, once thought of as an endonuclease inhibitor, has previously been shown to prevent the activation of caspase-3. We show that zinc prevents the activation of downstream caspases and apoptosis induced by both insults, yet does not prevent release of mitochondrial cytochrome c. The ability of calyculin A and zinc to prevent DNA digestion implies that the mitochondrial pathway is important for induction of apoptosis by both agents. These results do not support an alternative pathway in which caspase-8 directly activates caspase-3. These results also demonstrate that a critical protein phosphatase regulates the release of cytochrome c and apoptosis induced by both insults.  相似文献   

13.
We investigated the ability of caspases (cysteine proteases with aspartic acid specificity) to induce cytochrome c release from mitochondria. When Jurkat cells were induced to undergo apoptosis by Fas receptor ligation, cytochrome c was released from mitochondria, an event that was prevented by the caspase inhibitor, zVAD-fmk (zVal-Ala-Asp-CH2F). Purified caspase-8 triggered rapid cytochrome c release from isolated mitochondria in vitro. The effect was indirect, as the presence of cytosol was required, suggesting that caspase-8 cleaves and activates a cytosolic substrate, which in turn is able to induce cytochrome c release from mitochondria. The cytochrome c releasing activity was not blocked by caspase inhibition, but was antagonized by Bcl-2 or Bcl-xL. Caspase-8 and caspase-3 cleaved Bid, a proapoptotic Bcl-2 family member, which gains cytochrome c releasing activity in response to caspase cleavage. However, caspase-6 and caspase-7 did not cleave Bid, although they initiated cytochrome c release from mitochondria in the presence of cytosol. Thus, effector caspases may cleave and activate another cytosolic substrate (other than Bid), which then promotes cytochrome c release from mitochondria. Mitochondria significantly amplified the caspase-8 initiated DEVD-specific cleavage activity. Our data suggest that cytochrome c release, initiated by the action of caspases on a cytosolic substrates, may act to amplify a caspase cascade during apoptosis.  相似文献   

14.
We explored the role of low mitochondrial membrane potential (DeltaPsim) and the lack of oxidative phosphorylation in apoptosis by assessing the susceptibility of osteosarcoma cell lines with and without mitochondrial DNA to staurosporine-induced death. Our cells without mitochondrial DNA had low DeltaPsim and no functional oxidative phosphorylation. Contrary to our expectation, these cells were more resistant to staurosporine-induced death than were the parental cells. This reduced susceptibility was associated with decreased activation of caspase 3 but not with the mitochondrial permeability transition pore or cytochrome c release from the mitochondria. Apoptosis in both cell lines was associated with an increase in DeltaPsim. Bcl-x(L) could protect both cell types against caspase 3 activation and apoptosis by a mechanism that does not appear to be mediated by mitochondrial function or modulation of DeltaPsim. Nevertheless, we found that Bcl-x(L) expression can stimulate cell respiration in cells with mitochondrial DNA. Our results showed that the lack of functional oxidative phosphorylation and/or low mitochondrial membrane potential are associated with an antiapoptotic effect, possibly contributing to the development of some types of cancer. It also reinforces a model in which Bcl-x(L) can exert an antiapoptotic effect by stimulating oxidative phosphorylation and/or inhibiting caspase activation.  相似文献   

15.
The signaling events leading to apoptosis can be divided into two major pathways, involving either mitochondria (intrinsic) or death receptors (extrinsic). In a recent study, we have shown the involvement of the mitochondria-dependent apoptotic pathway in heat-induced male germ cell apoptosis in the rat. In additional studies, using the gld (generalized lymphoproliferation disease) and lprcg (lymphoproliferation complementing gld) mice, which harbor loss-of-function mutations in Fas L and Fas, respectively, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system is not required for heat-induced germ cell apoptosis in the testis. In the present study, we have found that the initiation of apoptosis in wild-type mice was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. The relocation of Bax is accompanied by sequestration of ultracondensed mitochondria into paranuclear areas of apoptotic germ cells, cytosolic translocation of mitochondrial cytochrome c and DIABLO, and is associated with activation of the initiator caspase 9 and the executioner caspase 3. Similar events were also noted in both gld and lprcg mice. Taken together, these results indicate that the mitochondria-dependent pathway is the key apoptotic pathway for heat-induced male germ cell death in mice.  相似文献   

16.
Mitochondria at the Crossroad of Apoptotic Cell Death   总被引:8,自引:0,他引:8  
In the past few years, it has become widely appreciated that apoptotic cell death generallyinvolves activation of a family of proteases, the caspases, which undermine the integrity ofthe cell by cleavage of critical intracellular substrates. Caspases, which are synthesized asinactive zymogens, are themselves caspase substrates and this cleavage leads to their activation.Hence, the potential exists for cascades of caspases leading to cell death. However, it has beenrecently recognized that another, perhaps more prominent route to caspase activation, involvesthe mitochondria. Upon receipt of apoptotic stimuli, either externally or internally generated,cells initiate signaling pathways which converge upon the mitochondria to promote release ofcytochrome C to the cytoplasm; cytochrome c, thus released, acts as a potent cofactor incaspase activation. Even cell surface death receptors such as Fas, which can trigger directcaspase activation (and potentially a caspase cascade), appear to utilize mitochondria as partof an amplification mechanism; it has been recently demonstrated that activated caspases cancleave key substrates to trigger mitochondrial release of cytochrome c, thereby inducing furthercaspase activation and amplifying the apoptotic signal. Therefore, mitochondria play a centralrole in apoptotic cell death, serving as a repository for cytochrome c.  相似文献   

17.
Generation of reactive oxygen species (ROS) and activation of caspase cascade are both indispensable in Fas-mediated apoptotic signaling. Although ROS was presumed to affect the activity of the caspase cascade on the basis of findings that antioxidants inhibited the activation of caspases and that the stimulation of ROS by itself activated caspases, the mechanism by which these cellular events are integrated in Fas signaling is presently unclear. In this study, using human T cell leukemia Jurkat cells as well as an in vitro reconstitution system, we demonstrate that ROS are required for the formation of apoptosome. We first showed that ROS derived from mitochondrial permeability transition positively regulated the apoptotic events downstream of mitochondrial permeability transition. Then, we revealed that apoptosome formation in Fas-stimulated Jurkat cells was clearly inhibited by N-acetyl-L-cysteine and manganese superoxide dismutase by using both the immunoprecipitation and size-exclusion chromatography methods. To confirm these in vivo findings, we next used an in vitro reconstitution system in which in vitro-translated apoptotic protease-activating factor 1 (Apaf-1), procaspase-9, and cytochrome c purified from human placenta were activated by dATP to form apoptosome; the formation of apoptosome was markedly inhibited by reducing reagents such as DTT or reduced glutathione (GSH), whereas hydrogen peroxide prevented this inhibition. We also found that apoptosome formation was substantially impaired by GSH-pretreated Apaf-1, but not GSH-pretreated procaspase-9 or GSH-pretreated cytochrome c. Collectively, these results suggest that ROS plays an essential role in apoptosome formation by oxidizing Apaf-1 and the subsequent activation of caspase-9 and -3.  相似文献   

18.
The release of cytochrome c from intermembrane space of mitochondria into cytosol is one of the critical events in apoptotic cell death. The important anti-apoptotic oncoprotein Bcl-2 inhibits this process. In the present study it was shown that apoptosis and release of cytochrome c induced by staurosporine or by tumor necrosis factor- in HeLa cells were not affected by inhibitors of respiration (rotenone, myxothiazol, antimycin A) or by uncouplers (CCCP, DNP) that decrease the membrane potential at the inner mitochondrial membrane. The inhibitors of respiration and the uncouplers did not affect also the anti-apoptotic activity of Bcl-2.  相似文献   

19.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

20.
We investigated the influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV). Microscopic observation revealed that infection of SL-1 cells with AfMNPV resulted in apoptosis, displaying apoptotic bodies in fluorescent-stained nuclei of AfMNPV-infected SL-1cells. Western blot analysis demonstrated that AfMNPV-induced apoptosis in insect SL-1 cells was significantly inhibited by cyclosporin A which blocked a translocation of cytochrome c from the mitochondria to the cytosol. As determined by using AC-DEVD-AFC as substrate, the activity of caspase-3 in AfMNPV-induced cells was detected as early as 4h post infection, gradually increased with time extension, and reached a highest level after 16h of infection. However, activity of caspase-3 in apoptotic cells decreased in the presence of cyclosporin A (30microM), indicating that activation of caspase-3 in SfaMNPV-induced cells was dependent on the release of cytochrome c from the mitochondria. In addition, cyclosporin A could markedly inhibit mitochondrial transmembrane potential (DeltaPsim) disruption in undergoing apoptotic cells. These data indicate that cytochrome c plays a key role in AfMNPV-induced apoptosis in S. litura cells and may be required for caspase activation during the induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号