首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relation between jaw movements and jaw muscle activity was examined during two different types of drinking in pigeons: tip and rictus drinking. The amplitude and duration of jaw opening is greater for rictus than for tip drinking, but both types involve individual cycles of jaw-opening and closing movements, organized into bouts. Cycle duration increases gradually over the initial portion of the bout and is relatively constant thereafter.Each drinking cycle is composed of an initial rapid jaw-opening component, a sustained opening phase of variable duration and a closing movement. The initial and final phases are related, respectively, to activity in the upper beak levator (protractor) and the jaw closer (adductor, pterygoid) muscles. The amplitude and duration of the sustained phase are correlated with the magnitude and duration of activity in the lower jaw opener (depressor). The kinematic and electromyographic organization of jaw movements during drinking is discussed in relation to the morphology of the jaw apparatus and the functional requirements of the behavior.Abbreviations AMEM adductor mandibulae externus muscle - DM depressor mandibulae muscle - EMG electromyographic - PQP protractor quadrati et pterygoidei muscle - PTP pseudotemporalis profundus muscle - PVL/PVM pterygoideus ventralis muscle, pars lateralis and medialis  相似文献   

2.
During each phase of the pigeon's eating sequence, jaw opening amplitude (gape) is adjusted to the size of the food object; first prior to contact (Grasping), again in positioning the food (Stationing), and finally, during its movement through the oral cavity (Intraoral Transport). Part I of this study examined jaw movement kinematics during ingestion of different size food pellets to determine the relative contribution of velocity and rise time variables. Part II specified the muscle activity patterns mediating each phase of the eating sequence, and determined how these patterns are modulated to produce adjustments of gape size.The relative contribution of velocity and rise time variables to the control of gape differs in each phase of the eating sequence. However, for any pellet size, variations in opening rise time may function in a compensatory manner to minimize gape undershooting. Each phase of the eating sequence is mediated by a characteristic muscle activity pattern. The adjustment of gape size to pellet size involves systematic modulation of this pattern, and the parameters modulated differ in the different phases in a manner which may reflect the functional requirements of each phase.Abbreviations AMEM adductor mandibulae externus muscle - DM depressor mandibulae muscle - EMG electromyographic - PDC/PDR pterygoideus muscle, pars dorsalis caudalis and rostralis - PQP protractor quadrati et pterygoidei muscle - PTP pseudotemporalis profundus muscle - PVL/PVM pterygoideus ventralis muscle, pars lateralis and medialis  相似文献   

3.
Summary The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).Abbreviations CM cochlear microphonic potential - IID interaural intensity difference - IID-MRA minimum resolvable angle calculated from interaural intensity difference - MRA minimum resolvable angle - OTD interaural ongoing time difference - RMS root mean square - SPL sound pressure level  相似文献   

4.
Summary Calcium and phosphorus were measured in the yolk and albumen of fertile pigeon (Columba livia) eggs incubated for 0–17 days, and in embryos and hatchlings. Shell provided most of the calcium for skeletal mineralization of the embryos, whereas phosphorus was derived from the yolk and albumen. Mobilization of calcium from the shell to the embryo commenced at approximately day 11 of incubation, accumulating both in the embryo and the yolk sac. There was 1.4 times more calcium in squab yolk sacs than that contained in newly laid egg yolks. The results suggest that whereas general patterns of calcium and phosphorus accumulation during embryogenesis in altricial birds closely resemble those of precocial birds, calcium mobilization from the shell begins later, proceeds at a slower rate and results in a less mineralized hatchling.CIDA/NSERC Visiting Research Associate Permanent address: Department of Animal Science, University of Peradeniya, Peradeniya, Sri Lanka  相似文献   

5.
Sleep in the domestic pigeon (Columba livia)   总被引:1,自引:0,他引:1  
  相似文献   

6.
Summary The Herbst corpuscles (HCs) of the pigeon's wing were investigated both histologically and electrophysiologically. All HCs found in the wing were lamellated, basic type corpuscles without any specialized structures. Their lengths ranged from 67 to 853 m (mean = 310 m). Unexpected findings were their large number (about 1000 in the manual part of the wing), their irregular distribution and their preferred orientation (approximately parallel or at right angles to the primary feather follicles). The HCs were highly sensitive to vibrational stimuli applied to wing feathers. Their electrophysiological behaviour has the following characteristics: no spontaneous activity, phase-locked nerve impulses, a 11 stimulus-response relation up to at least 660 Hz at sufficiently high stimulus amplitudes, and a sensitivity to stimulus frequencies up to 1800 Hz. The best frequencies of 52 receptive units for which complete threshold curves were obtained lay between 100 and 900 Hz, 67% of the best frequencies were between 200 and 400 Hz. The threshold amplitudes at best frequency ranged from 0.5 to 150 m. Two virtually non-overlapping mechanosensitive areas on the wing were identified. One is a very narrow band along the frontal edge and the other covers a large area of the remaining wing. They correspond with the two branches of the radial nerve. The histological and electrophysiological findings suggest that the HCs are part of a vibrational sensory system that is principally involved in flight control. The actual aerodynamic state during flight could be detected by the frontal receptive area, and flight behaviour could be adjusted accordingly. The effectiveness of these corrective reactions would then be assessed on the basis of air current changes along the caudal wing edge by the caudal receptive area. Despite some physiological differences considerable similarities between HCs and Pacinian corpuscles support the hypothesis that they evolved from a unique ancestral lamellar receptor.Abbreviations HC(s) Herbst corpuscle(s) - PC(s) Pacinian corpuscle(s) All experiments were carried out at the Ruhr-Universität Bochum, Lehrstuhl für Allgemeine Zoologie  相似文献   

7.
We used acid digestion and glycogen depletion to determine fascicle organization, fiber morphology, and physiological and anatomical features of individual motor units of an in-series muscle, the pectoralis (pars thoracicus) of the pigeon (Columba livia). Most fascicles are attached at one end to connective tissue. Average fiber length in the four regions examined range from 42% to 66% of average fascicle length. More than 65% of fibers are blunt at one end of a fascicle and taper intrafascicularly. Fibers with blunt–blunt endings range from 13% to 31% of the population in different regions; taper–taper fibers range from 2% to 17%. Pigeon pectoralis fibers are distinguished histochemically into fast-twitch glycolytic (FG) and fast-twitch oxidative-glycolytic (FOG) populations. Three units composed of FG fibers (FG units) contract more quickly than three units composed of FOG fibers (FOG units) (range 31–37 vs 47–62 msec), produce more tetanic force (0.11–0.32 vs 0.02–0.05 N) and are more fatigable (<18% initial force vs >50% after repeated stimulation). Most motor units are confined to one of the four muscle regions. Territory of two FOG units is <30% of parent fascicle length. Territories of other units spanned parent fascicles; most fibers in these units do not extend the full fascicle length. Compared to FG units, FOG units have lower maximum innervation ratios and density indices (ratio of depleted/total FOG fibers in territory 8–14% vs 58–76% for FG units). These differences support the hypothesis that FG units are organized to produce substantial force and power for takeoff, landing and other ballistic movements whereas FOG units are suited for sustained flight when power requirements are reduced. Implications of findings for understanding the control of in-series muscles and the use of connective tissue elastic elements during wing movements are discussed. J.Morphol. 236:179–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The pigeon esophageal smooth muscle shows "spontaneous" rhythmic bursts of spikes with increasing discharge frequency from pharynx to crop. There are no slow waves. The changes of the electric pattern induced by pharmacological administrations of atropine, prostigmine, hexamethonium and by asphyxia suggest that the electric activity is myogenic in origin. The innervation plays a role in the control of this activity and it is essential for the functional polarization.  相似文献   

9.
Rosette strain gage, electromyography (EMG), and cineradiographic techniques were used to analyze loading patterns and jaw movements during mastication in Macaca fascicularis. The cineradiographic data indicate that macaques generally swallow frequently throughout a chewing sequence, and these swallows are intercalated into a chewing cycle towards the end of a power stroke. The bone strain and jaw movement data indicate that during vigorous mastication the transition between fast close and the power stroke is correlated with a sharp increase in masticatory force, and they also show that in most instances the jaws of macaques are maximally loaded prior to maximum intercuspation, i.e. during phase I (buccal phase) occlusal movements. Moreover, these data indicate that loads during phase II (lingual phase) occlusal movements are ordinarily relatively small. The bone strain data also suggest that the duration of unloading of the jaw during the power stroke of mastication is largely a function of the relaxation time of the jaw adductors. This interpretation is based on the finding that the duration from 100% peak strain to 50% peak strain during unloading closely approximates the half-relaxation time of whole adductor jaw muscles of macaques. The EMG data of the masseter and medial pterygoid muscles have important implications for understanding both the biomechanics of the power stroke and the external forces responsible for the "wishboning" effect that takes place along the mandibular symphysis and corpus during the power stroke of mastication. Although both medial pterygoid muscles reach maximum EMG activity during the power stroke, the activity of the working-side medial pterygoid peaks after the balancing-side medial pterygoid. Associated with the simultaneous increase of force of the working-side medial pterygoid and the decrease of force of the balancing-side medial pterygoid is the persistently high level of EMG activity of the balancing-side deep masseter (posterior portion). This pattern is of considerable significance because the direction of force of both the working-side medial pterygoid and the balancing-side deep masseter are well aligned to aid in driving the working-side lower molars across the upper molars in the medial direction during unilateral mastication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The morphology and function of all muscles controlling the pigeon hand were analyzed. Muscle action was determined in situ by inducing contraction via silver wire electrodes in anesthetized birds. EMG electrodes were implanted in the test muscle and an adjacent muscle to monitor contraction and volume conduction respectively. Results indicate that pigeons have fine control of hand and digit movements. However, the directions of movement are restricted. Movements have been eliminated or severely limited in those directions that experience strong stress during flight. Such restrictions may reduce the amount of muscular activity required for stabilization of the hand and its components. Mobility is retained in directions not subject to large stresses and where movement is essential for the kinematics of flight to be executed properly. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Birds have a remarkable capacity to regulate circulation yet little is known about the avian baroreflex. Although both linear regression and curve-fitting techniques are frequently used to assess baroreflex function in mammals, only the former technique has been used in birds. We characterized baroreflex gain in domestic pigeons (Columba livia) and compared gain values derived from applying linear regression to ramp changes in mean arterial pressure (MAP) to values derived from fitting a four-parameter sigmoidal function to steady-state alterations in MAP. We found that, unlike mammals, pigeons do not display circadian patterns in MAP, HR or gain derived from bolus injections of vasoactive drugs. The pressor, but not depressor response, was attenuated by administration of the NMDA-antagonist ketamine, suggesting that central processing of the baroreflex may be similar in birds and mammals despite anatomical differences in arterial baroreceptive zones. Because graded infusions of vasoactive drugs could not consistently produce a plateau in the HR response, fitting data to a sigmoidal curve was difficult. Thus, we propose that variations of the Oxford method and linear regression analysis are superior method to assess baroreflex gain in pigeons than curve fitting.  相似文献   

12.
13.
14.
The role of beta-adrenergic receptors in regulating cutaneous water evaporation (CWE) in the rock pigeon (Columba livia) is well documented. Here, we studied the involvement of the alpha2-adrenergic receptors in this cooling mechanism of the heat-acclimated (HAc) pigeon. Systemic alpha2-adrenergic activation [clonidine, 50 microg kg(-1), intramuscular (i.m.)] was found to increase CWE in heat-acclimated pigeons at an ambient temperature (T(a)) of 25 degrees C. Subcutaneous administration of the drug had no significant effect. Preinjection of an alpha2-adrenergic antagonist (yohimbine, 10 mg kg(-1), i.m.) completely prevented clonidine-induced CWE and attenuated propranolol-induced CWE by 53%. Pretreatment with a beta-adrenergic agonist (isoproterenol, 4 mg kg(-1), i.m.) abolished the effect of clonidine. None of the above treatments was found to elicit significant CWE in nonacclimated (NAc) pigeons. These findings, in addition to previously reported data, indicate a complex regulatory pathway of CWE in the heat-acclimated pigeon consisting of alpha2- and beta2-adrenergic receptors. The possible hierarchical pattern of these receptors is discussed.  相似文献   

15.
Summary The pigeon (Columba livia) has a well-developed ability to detect weak vibrations. Using the method of heart-rate conditioning the vibrational sensitivity was determined for four pigeons at an error probability of P<0.025. The threshold-frequency relationships indicate that the greatest sensitivity to vibrational stimuli is found in the frequency range from 300 to 1,000 Hz with thresholds of about 0.1 m; lowest threshold is 0.04 m at 500 Hz (Fig. 4). Pigeons can respond not only to the frequency of a stimulus, but also to its intensity. The interval decrement (in %) of ECG is a positive correlative function of the stimulus intensity, the calculated values being approximately 4–5% per order of magnitude of the stimulus amplitude (in m) at best frequencies (Fig. 5). The value of vibration detection for birds is discussed.Abbreviation ECG electrocardiogram  相似文献   

16.
The present study provides an up-to-date overview of the cutaneous water-evaporation cooling mechanism in the rock pigeon. Cutaneous water evaporation fully replaces the classic respiratory cooling mechanism in the resting, heat-acclimated bird, and is more economical in terms of water conservation. It enables the pigeon to maintain homeostasis, and to breed successfully in harsh environments. Adrenergic signaling is involved in the initiation of this novel mechanism, either by deactivation of the beta-adrenergic receptors (ARs), or activation of the alpha-AR. The adrenergic signaling results in a marked increase in cutaneous blood flow and in the arterial-to-venous blood-flow ratio. This is associated with alterations in the cutaneous capillary wall ultrastructure, which increase its permeability to plasma proteins and water. The end result of this process might be an increase in water efflux from the capillary lumen. The properties of beta-ARs were measured in the cardiac muscle of thermal-acclimated pigeons. Significant down-regulation in the density of beta-ARs, associated with increased affinity of these receptors, was measured in the heat-acclimated pigeon. Concomitantly, changes in the skin ultrastructure and lipid composition were found in very well defined patches in the epidermis of heat-acclimated pigeons. These suppress the skin resistance to water transfer. We suggest that this cooling mechanism involves finely orchestrated adjustments in the ultrastructure of the skin and the cutaneous capillaries, and in skin blood flow. Adrenergic signals are among those factors that regulate this cooling mechanism during exposure to a hot environment.  相似文献   

17.
18.
A Golgi study of the isthmic nuclei in the pigeon (Columba Iivia)   总被引:1,自引:0,他引:1  
Summary The isthmic nuclei of the pigeon were studied with the use of three different Golgi techniques. The nucleus isthmo-opticus (IO) consists of a single cell type in which all dendrites of one neuron take the same direction and ramify at identical distances from the perikaryon to form dense dendritic arborizations. The cell bodies of the IO neurons form two parallel layers. The dendrites of these neurons always extend to the area between the two layers so that the dendritic arborizations of opposite neurons overlap. A model of the cellular organization of the IO was constructed based upon these morphological characteristics. The neurons of the n. isthmi/pars parvocellularis (Ipc) have oval perikarya and long, smooth, infrequently branching dendrites. All neurons except those at the borders of the nucleus show the same dorsoventral orientation in their dendritic arborizations and together with their afferents seem to have a columnar organization. The dendrites of the neurons located at the margin of the nucleus ramify within the Ipc along its border. The n. semilunaris (Slu) consists of neurons with round somata that have on an average three dendrites with small spines. The axons leave the nucleus from the medial side and join the lemniscus lateralis. The neurons of the n. isthmi/pars magnocellularis (Imc) comprise a generalized isodendritic type resembling the cells of the reticular formation. Axons from the tectum penetrate the nucleus, making numerous en-passant contacts with several neurons.  相似文献   

19.
20.
The occurrence of intestinal parasites of Columba livia domestica has been on the increase, leading to high economic and production losses with more fatal cases. This study was designed to investigate the prevalence of cestodes in pigeons and determine the efficacy of Typha angustata extract and sulphadimidine against these cestodes in the domestic pigeon. A total of 30 pigeons were examined. 18 (60%) pigeons were found infected with only one type of cestode species (Raillietina spp.). The difference in prevalence between males and females was statistically significant (χ2 = 8.167, p = 0.004). The mean EPG count in group A (treated with T. angustata extract) before treatment and after treatment was 176 ± 4.33 and 155 ± 4.24, respectively. In group B (treated with sulphadimidine), the mean EPG calculated before treatment and after treatment was 184 ± 6.74 and 35 ± 3.53, respectively. The efficacy at day 28 of T. angustata and Sulphadimidine was 11.93% and 80.97%, respectively. It was concluded on the basis of the EPG and efficacy data that T. angustata extract had low efficacy against raillietiniasis, while as sulphadimidine, which is also used before to treat different intestinal parasites, had a good efficacy against raillietiniasis. Further studies are required to know the prevalence of other gastrointestinal parasites in pigeons and efficacy of different medicinal plants against such parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号