首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A negative regulatory element (NRE) spanning the tRNA primer-binding site (PBS) of Moloney murine leukemia virus (M-MuLV) mediates repression of M-MuLV expression specifically in embryonal carcinoma (EC) cells. We precisely defined the element by base-pair mutagenesis to an 18-base-pair segment of the tRNA PBS and showed that the element also restricted expression when moved upstream of the long terminal repeat. A DNA-binding activity specific for the M-MuLV NRE was detected in vitro by using crude EC nuclear extracts in exonuclease III protection assays. Binding was strongly correlated with repression in EC cells. Mutations within the NRE that relieved repression disrupted binding activity. Also, nuclear extracts prepared from permissive, differentiated EC cell cultures showed reduced binding activity for the NRE. These results indicate the presence of a stem cell-specific repressor that extinguishes M-MuLV expression via the NRE at the tRNA PBS.  相似文献   

3.
4.
5.
The Moloney murine leukemia virus (MLV) repressor binding site (RBS) is a major determinant of restricted expression of MLV in undifferentiated mouse embryonic stem (ES) cells and mouse embryonal carcinoma (EC) lines. We show here that the RBS repressed expression when placed outside of its normal MLV genome context in a self-inactivating (SIN) lentiviral vector. In the lentiviral vector genome context, the RBS repressed expression of a modified MLV long terminal repeat (MNDU3) promoter, a simian virus 40 promoter, and three cellular promoters: ubiquitin C, mPGK, and hEF-1a. In addition to repressing expression in undifferentiated ES and EC cell lines, we show that the RBS substantially repressed expression in primary mouse embryonic fibroblasts, primary mouse bone marrow stromal cells, whole mouse bone marrow and its differentiated progeny after bone marrow transplant, and several mouse hematopoietic cell lines. Using an electrophoretic mobility shift assay, we show that binding factor A, the trans-acting factor proposed to convey repression by its interaction with the RBS, is present in the nuclear extracts of all mouse cells we analyzed where expression was repressed by the RBS. In addition, we show that the RBS partially repressed expression in the human hematopoietic cell line DU.528 and primary human CD34(+) CD38(-) hematopoietic cells isolated from umbilical cord blood. These findings suggest that retroviral vectors carrying the RBS are subjected to high rates of repression in murine and human cells and that MLV vectors with primer binding site substitutions that remove the RBS may yield more-effective gene expression.  相似文献   

6.
O Niwa  Y Yokota  H Ishida  T Sugahara 《Cell》1983,32(4):1105-1113
Expression and DNA methylation of the Moloney murine leukemia virus (M-MuLV) genome were investigated in murine teratocarcinoma cells after virus infection. The newly acquired viral genome was devoid of methylation, yet its expression was repressed. The integrated viral genome in undifferentiated teratocarcinoma cells was methylated within 15 days after infection. Although 5-azacytidine decreased the level of DNA methylation, it did not activate M-MuLV in undifferentiated cells. Activation by 5-azacytidine occurred only in differentiated teratocarcinoma cells. Thus two independent mechanisms seem to regulate gene expression during the course of differentiation. The first mechanism operates in undifferentiated cells to block expression of M-MuLV and other exogeneously acquired viral genes, such as SV40 and polyoma virus, and does not depend on DNA methylation. The second mechanism relates only to differentiated cells and represses expression of genes in which DNA is methylated.  相似文献   

7.
8.
9.
The Moloney leukemia virus (M-MuLV) genome was introduced into undifferentiated teratocarcinoma cells by transfection of a plasmid with the virus genome linked to pSV2neo, which carries a bacterial drug resistance gene, neo, or by cotransfection with pSV2neo. In the resulting cells, the M-MuLV genome remained hypomethylated, but its expression was suppressed in cells in an undifferentiated state. The pattern of DNA methylation of the viral genome remained unchanged when the cells were induced to differentiate into epithelial tissues. However, spontaneous M-MuLV expression was detected with differentiation of the cells. To determine to what extent the viral long terminal repeat (LTR) was responsible for this suppression in undifferentiated cells, I constructed plasmids in which neo was placed under the control of the promoter sequence of the dihydrofolate reductase gene or the M-MuLV LTR, and compared the biological activities of the plasmids in Ltk- cells and in undifferentiated teratocarcinoma cells. In Ltk- cells, these plasmids were highly efficient in making the cells resistant to selection by G418. However, in undifferentiated teratocarcinoma cells, the M-MuLV LTR promoted neo gene expression at only 10% of the expected efficiency, as compared with the expression of the neo gene under the control of the simian virus to or dihydrofolate reductase promoter. Thus, the mechanisms of gene regulation are not the same in undifferentiated and differentiated teratocarcinoma cells.  相似文献   

10.
EcoRI DNA fragments from a Moloney murine leukemia virus (M-MuLV)-infected mouse fibroblast line (M-MuLV clone A9) were cloned in lambda phage Charon 4A cloning vector to derive clones containing integrated M-MuLV proviral DNA. A 10- to 16-megadalton class of EcoRI fragments was chosen for cloning, based on (i) its ability to induce XC-positive virus upon transfection of NIH/3T3 cells, and (ii) its content of a 0.8-megadalton viral KpnI fragment diagnostic for M-MuLV. Six recombinant DNA clones were isolated which contain a complete M-MuLV provirus, as judged by (i) restriction endonuclease mapping and (ii) the fact that all of the clones gave rise to XC-positive, NB-tropic virus upon DNA infection in NIH/3T3 cells. The sizes of the inserts were 12.0 (for three clones) or 12.5 megadaltons (for three clones). Restriction mapping indicated that these six clones represent five different M-MuLV proviral integrations into different cellular DNA sites.  相似文献   

11.
12.
The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors are bound in vivo. To address this problem, we carried out in vivo footprinting of the M-MuLV enhancer in infected cells by in vivo treatment with dimethyl sulfate (DMS) followed by visualization through ligation-mediated PCR (LMPCR) and gel electrophoresis. In vivo DMS-LMPCR footprinting of the upstream LTR revealed evidence for factor binding at several previously characterized motifs. In particular, protection of guanines in the central LVb/Ets and Core sites within the 75-bp repeats was detected in infected NIH 3T3 fibroblasts, Ti-6 lymphoid cells, and thymic tumor cells. In contrast, factor binding at the NF-1 sites was found in infected fibroblasts but not in T-lymphoid cells. These results are consistent with the results of previous experiments indicating the importance of the LVb/Ets and Core sequences for many retroviruses and the biological importance especially of the NF-1 sites in fibroblasts and T-lymphoid cells. No evidence for factor binding to the glucocorticoid responsive element and LVa sites was found. Additional sites of protein binding included a region in the GC-rich sequences downstream of the 75-bp repeats (only in fibroblasts), a hypersensitive guanine on the minus strand in the LVc site (only in T-lymphoid cells), and a region upstream of the 75-bp repeats. These experiments provide concrete evidence for the differential in vivo binding of nuclear factors to the M-MuLV enhancers in different cell types.  相似文献   

13.
14.
15.
Embryonal carcinoma (EC) cells are unable to make interferon in response to inducing agents. This block disappears after differentiation. We have found that nuclear extracts from undifferentiated P19 EC cells contain a DNA-binding activity which specifically recognizes a region within the human interferon-beta 1 promoter. This activity is absent from differentiated cell types, both of EC and non-EC origin. The binding of the factor in undifferentiated EC cells leads to dramatic changes in the overall protein binding pattern of the interferon promoter as compared with differentiated cells, and may be responsible for repression of the endogenous interferon-beta gene prior to differentiation.  相似文献   

16.
17.
18.
19.
20.
T P Loh  L L Sievert    R W Scott 《Journal of virology》1988,62(11):4086-4095
An intragenic region spanning the tRNA primer binding site of a Moloney murine leukemia virus recombinant retrovirus was found to restrict expression specifically in embryonal carcinoma (EC) cells. When the inhibitory domain was present, the levels of steady-state RNA synthesized from integrated recombinant templates in stable cotransformation assays were reduced 20-fold in EC cells but not in C2 myoblast cells. Transient-cotransfection assays showed that repression of a template containing the EC-specific inhibitory component was relieved by an excess of specific competitor DNA. In addition, repression mediated by the inhibitory component was orientation independent. This evidence demonstrates the presence of a saturable, trans-acting negative regulatory factor(s) in EC cells and suggests that the interaction of the factor(s) with the intragenic inhibitory component occurs at the DNA level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号