首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of postsynaptic potentiation (PSP) and desensitization developing due to nonquantal acetylcholine (ACh) secretion was investigated in mouse diaphragm with reference to time-amplitude relationships of miniature endplate currents (MEPC). The H effect (which characterizes nonquantal secretion (NS) of ACh) fell to zero over 3 h under the action of armine-induced inhibition of acetylcholinesterase (AChE) at a temperature of 20°C. A decline in the decay time constant () of MEPC unaccompanied by observable alteration in MEPC amplitude occurred at the same time. This accelerated decay of MEPC was not observed in the absence of NS (the early stages of denervation). Start of NS did not show any effect on maximum retardation of MEPC decay due to AChE inhibition, indicating that no PSP sets in under the effects of non-quantal secretion. The effect of decline in accelerated with a rise in temperature; it could be reproduced with neostigmine replacing armine, while remained unchanged in the time spells investigated with AChE in its active state. Non-quantal ACh is not thought to produce substantial retardation of MEPC decay, although it does bring about desensitization, signs of which may be partially masked owing to concurrent onset of PSP.S. V. Kurashov Medical Institute, Kazan'. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 507–513, July–August, 1990.  相似文献   

2.
Miniature endplate currents (MEPCs) recorded from mouse diaphragms with a point voltage clamp, without inhibition of acetylcholinesterase (AChE) and in the absence of any drug, showed in their decay phase consistent deviations from an exponential time course, consisting of (a) "curvature," a progressive increase of decay rate during most of the decay phase, followed by (b) "late" tails. Both phenomena persisted when MEPCs (and channel lifetime) were prolonged by ethanol. Curvature was increased by muscle fiber depolarization and decreased by hyperpolarization. Receptor blockade by (+)-tubocurarine, alpha-bungarotoxin, hexamethonium, or myasthenic IgG accelerated the decay of the main part of MEPCs and eliminated curvature; the time constant of MEPCs became close to the channel time constant. We conclude that curvature arises from repeated action of ACh with cooperativity in ACh-receptor interaction; the voltage sensitivity of curvature follows from the voltage sensitivity of channel closing. Ethanol, in addition to its effect to prolong channel lifetime, enhances the tendency of ACh to act more than once to open channels before being lost to the system. Analysis of the rising phase of the MEPC, in terms of driving functions, also indicated that ethanol promotes channel opening by ACh; this action can account for a substantial increase of MEPC height by ethanol when MEPCs are made small by receptor blockade. Driving functions were also voltage sensitive, in a manner indicating acceleration of channel opening, but reduction of channel conductance, with hyperpolarization. Poisoning or inhibition of AChE prolonged MEPCs without altering the duration of ionic channels. Since ethanol caused further prolongation of MEPCs after poisoning of AChE, with little change in MEPC height, we conclude that the extension of mean channel lifetime by ethanol is accompanied by a similar extension of ACh binding to receptors. After poisoning of AChE, MEPCs became very variable in time course and the decay rate (tau-1) was correlated with MEPC height with a slope of log tau vs. log height of 0.77 for MEPCs of greater than 60% mean size. This slope is larger than expected from cooperativity in ACh-receptor interaction. Correlation of tau and height of MEPCs also exists when AChE is intact; the slope of log tau vs. log height was 0.12 with or without prolongation of MEPCs by ethanol.  相似文献   

3.
The development of postsynaptic potentiation (PSP) and desensitization due to "non-quantal" acetylcholine that occurs when acetylcholinesterase (AChE) is inhibited was studied using the Na,K-ATPase inhibitor, ouabain, to alter (initially increasing, then decreasing) the level of non-quantal acetylcholine secretion, and exogenous acetylcholine. When ouabain increased non-quantal secretion the time constant () of the miniature end-plate current (MEPC) decay increased, i.e., PSP developed. The later the application of ouabain relative to inhibition of AChE, the greater the degree of PSP. During the next phase when non-quantal secretion was inhibited the MEPC time course shortened more rapidly than in the controls, i.e., desensitization occurred. If ouabain abolished non-quantal secretion before AChE had been inhibited did not change, and neither PSP nor desensitization developed. When AChE was not inhibited ouabain had no effect on . When ACh was continuously applied at 20 nmol·liter–1, similar to the nonquantal concentration, the shortening of slowed down, and the signal amplitude declined more rapidly than in controls. Addition of exogenous ACh (50 nmol·liter–1) after acceleration of MEPC decay had developed caused to increase to its initial value. The combined appearance of PSP and desensitization during the action of non-quantal ACh, and the sustained desensitization after removal of released ACh from the synaptic cleft are discussed.S. V. Kurashova Institute of Medicine, Russian Federation Ministry of Public Health, Kzan. Translated from Neirofiziologiya, Vol. 24, No. 4, pp. 396–404, July–August, 1992.  相似文献   

4.
In the end-plates of rat diaphragm among atypical miniature end-plate currents (MEPCs) 2.9% were giant and 5.1% were slowly rising. The frequency of the giant MEPCs was decreased when temperature was lowered and increased when acetylcholinesterase (AChE) was inhibited; the latter effect was reversed if d-tubocurarine was added. Frequency of the slowly rising MEPCs changed insignificantly by all conditions. It is suggested that a highly temperature-dependent presynaptic mechanism of giant MEPC generation does exist which is activated by acetylcholine (ACh). Data about changes in the time course of the slowly rising MEPCs by AChE inhibition and lowering of temperature make it possible to suggest that the slowly rising MEPCs may be accounted for either slow release of ACh quanta or release of quanta on large distances from synaptic cleft and postsynaptic cholinoreceptors. The latter is possible if ACh quanta are released from synaptic Schwann cell to periaxonial space.  相似文献   

5.
Miniature endplate potentials (MEPC) were recorded from rat diaphragm muscle fiber. A positive correlation was found in controls between half-decay time and amplitude of individual MEPC, an effect enhanced by acetylcholinesterase (AChE) inhibition (correlation coefficients: 0.29 and 0.49 respectively at a temperature of 28°C). Adding curare following AChE inhibition produced a reduction in the amplitude and duration of MEPC without influencing the correlation relationship between the above-mentioned parameters. This relationship declined significantly with a temperature reduction to 18°C in both the control and cases of AChE inhibition. The increase in MEPC half-decay time following AChE inhibition was greater at 28° than at 18°C; Q10 equalled about two for duration of rising time as compared with around three for MEPC half-decay time. Factors determining the time course of MEPC are discussed. The findings obtained are explained by postsynaptic potential (and cooperative binding of agonists to cholinoreceptors lies at the root of this) and by the pattern of ACh diffusion at the synaptic cleft.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 504–512, July–August, 1987.  相似文献   

6.
Miniature endplate currents (MEPC) were recorded in muscle fibers of rat diaphragm using voltage clamp technique during acetylcholinesterase (AChE) inhibition induced by various concentrations of galantamine. Their amplitude and time course began to increase at a galantamine concentration of 3.16·10–8 g/ml. Increased concentrations of galantamine produced a greater effect. Maximum amplitude and time course were reached at a concentration of 10–6 g/ml. The input resistance of muscle fibers increased under the effects of galantamine. In all cases MEPC fell exponentially. At a concentration of 10–5 g/ml galantamine produced a curarelike effect; amplitude and time course of decay increased to a lesser extent than at a concentration of 10–6 and the decay in MEPC became biphasic. Following washout of galantamine (10–5 g/ml) the time course of MEPC first rose, then fell, returning to the initial level in 3 h, and decay again became exponential. Changes in MEPC parameters under the effects of different concentrations of galantamine and washout were closely correlated. A positive correlation was found between the time course of decay and MEPC amplitude both in the presence and absence of AChE inhibition. It is postulated that the functional importance of synaptic AChE in repressing the postsynaptic action of acetylcholine is limited and that parameters of postsynaptic response may therefore be used to evaluate its action.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 607–614, September–October, 1985.  相似文献   

7.
We have studied the effect of substance P on the end-plate currents (EPC) and the miniature EPC (MEPC) after acetylcholine esterase (ACE) inhibition in the cut neuromuscular preparation of the frog sartorius muscle using the voltage-clamp technique. At concentrations of 5·10–7–1·10–6 moles/liter substance P had no effect on the amplitude and the time characteristics of single EPC and MEPC but promoted prolongation of EPC decay on repetitive stimulation of the nerve with a frequency of 10/sec, indicating intensification of postsynaptic potentiation. Elevation of the concentration of the given peptide to 5·10–6 moles/liter led to the shortening of the decay of single EPC and a more marked depression of the EPC amplitude in the trains as compared to the control, reflecting a decrease in the sensitivity of the postsynaptic membrane to the mediator, i.e., development of desensitization.S. V. Kurashov State Medical Institute, Kazan. I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 436–441, July–August, 1991.  相似文献   

8.
When a quantum of transmitter is released into a synaptic cleft, the magnitude of the subsynaptic response depends upon how much transmitter becomes bound to receptors. Theoretical considerations lead to the conclusion that if receptor density is normally high enough that most of the quantal transmitter is captured, subsynaptic quantal responses may be insensitive to receptor blockade. The effectiveness of receptor blockers in depressing the subsynaptic response should be diminished by interference with processes that normally dispose of transmitter, but increased if receptor density is reduced. In conformity with equations derived from a simple mathematical model, the apparent potency of (+)- tubocurarine (dTC) to depress the peak height of miniature end-plate currents (MEPCs) in mouse diaphragm was substantially reduced by poisoning of acetylcholinesterase (AChE) and increased by partial blockade of receptors by immunoglobulin G from patients with myasthenia gravis or alpha-bungarotoxin. We calculated from the data that normally capture of quantal acetylcholine (ACh) by receptors is approximately 75% of what it would be if there were no loss of ACh by hydrolysis or diffusion of ACh form the synaptic cleft. This fraction is increased to approximately 90% by poisoning of AChE. Conversely, it normally requires blockade of approximately 80% of receptors-and after AChE poisoning, approximately 90% of receptors-to reduce ACh capture (and MEPC height) by 50%. The apparent potency of dTC to alter MEPC time- course (after AChE poisoning) and to depress responses to superperfused carbachol was much greater than its apparent potency to depress MEPC height, but corresponded closely with the potency of dTC to block receptors as calculated from the action of dTC on MEPC height. These results indicate that the amplitude of the response to nerve-applied acetylcholine does not give a direct measure of receptor blockade; it is, in general, to be expected that an alteration of subsynaptic receptor density may not be equally manifest in responses to exogenous and endogenous neurotransmitter.  相似文献   

9.
The possible effects of the alkaloids vinblastine and colchicine on the postsynaptic membrane of the frog neuromuscular junction were investigated using voltage-clamp techniques. Concentrations of vinblastine and colchicine which had been shown to exert no effect on the amplitude and duration of miniature endplate currents (MEPC) and the current-voltage relationship of low-quantal endplate currents (EPC) together with the coefficient of voltage-dependent EPC decay did produce a considerable rise in the amplitude of response to iontophoretically applied acetylcholine (ACh). In addition, vinblastine and colchicine accelerate MEPC and EPC during acetylcholine esterase inhibition while further depressing the amplitude of multi-quantal EPC succeeding at the rate of 10 Hz as well as response to regular (5–10 Hz) application of ACh from a micropipet. The dosage-frequency effects of vinblastine and colchicine on the postsynaptic membrane (as described) are presumed to be unconnected with the action of these agents on muscle fiber cytoskeleton but the results of accelerated desensitization of cholinoreceptors.S. V. Kurashov Medical Institute, Kazan. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 75–81, January–February, 1988.  相似文献   

10.
Organophosphorus inhibitor of acetylcholinesterase (AChE) armin (1 x 10(-6) M) induced a variety of pre- and postsynaptic effects resulting from the AChE inhibition and subsequent accumulation of acetylcholine (ACh) in the synaptic cleft. The intensity of postsynaptic effects (level of neuron depolarization, degree of action potential depression) was shown to be different in the ganglia of frog and rabbit. This could be explained by differences in the total amount of ACh released in response to nerve stimulation as well as at rest. Both muscarinic and nicotinic cholinoreceptors were involved in the process of sustained depolarization of the neurons in the rabbit superior cervical ganglion after AChE inhibition. In frog ganglion neurons the nicotinic receptors did not participate in depolarization evidently due to their fast desensitization. The activation of presynaptic muscarinic receptors resulted in decrease of ACh released by nerve stimulation seems to weaken depolarization and blockade of synaptic transmission in sympathetic ganglia treated by AChE inhibitors.  相似文献   

11.
Mathematical modeling was applied to study the dependence of miniature endplate current (MEPC) amplitude and temporal parameters on the values of the rate constants of acetylcholine binding to receptors (k+) when cholinesterase was either active or inactive. The simulation was performed under two different sets of parameters describing acetylcholine receptor activation–one with high and another with low probability (Pohigh and Polow) of receptor transition into the open state after double ligand binding. The dependence of model MEPC amplitudes, rise times, and decay times on k+ differs for set Polow and set Pohigh. The main outcome is that for set Pohigh, the rise time is significantly longer at low values of k+ because of the prolongation of ACh diffusion time to the receptor. For the set Polow, the rise time is shorter at low values of k1, which can be explained by the small probability of AChR forward isomerization after ACh binding and faster MEPC's peak formation.  相似文献   

12.
Using mathematical modeling of the process of generation of a miniature end-plate current (MEPC), we studied the effect of acetylcholinesterase (AChE) inhibition on the amplitude and frequency parameters of synaptic signals in the neuromuscular junction. The density of acetylcholine receptors on the postsynaptic membrane and the number of acetylcholine molecules in its quantum were varied. AChE inhibition against the background of a decreased receptor density was shown to result in a much higher increase in the amplitude of modeled MEPC than that in control and in the case of the changed transmitter amount released in the synaptic cleft. The simulation data can be used as a theoretical background for interpretation of the reason for different efficiencies of AChE inhibitors in certain pathological states of the neuromuscular apparatus.Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 186–192, July–October, 1996.  相似文献   

13.
T Naka  N Sakamoto 《Bio Systems》1999,51(2):73-78
A two-dimensional compartment model devised for the appropriate representation of the transient process of the spontaneous generation of miniature endplate current (MEPC) at the neuromuscular junction is applied for clarifying the biochemical significance of the quantal release mechanism of acetylcholine (ACh), a typical neurotransmitter, in the synaptic chemical transmission process. The simulation analysis with the model demonstrates that the localization of the ACh release due to the fusion of a synaptic vesicle with the presynaptic membrane has significant effects on the amplitude of MEPC and that the stronger effects are caused with the smaller diffusion coefficients of ACh in the cleft. The sharpest and highest response of MEPC is achieved when the release area is about 4 times to the natural release through the narrow pore. On the other hand, the actual localization corresponding to the natural release of ACh makes the amplitude of MEPC higher by a factor about 2.5 compared with that in the most extended release of ACh examined, implying that the natural release mechanism works as an amplifier of the MEPC with the fixed amount of ACh available.  相似文献   

14.
The time-course of multiquantal end-plate currents (EPCs) was compared with monoquantal synaptic responses, i.e., miniature end-plate currents (MEPCs), in voltage-clamped rat diaphragm muscle fibers. In the presence of active acetylcholinesterase (AChE), the time constant of the decay of EPCs, that were composed of 25–140 quanta, was 1.2 times greater than that of MEPCs. After inhibition of AChE with armine or proserine the decay of the EPC was longer than the decay of the MEPC by 10–100 times, and unlike the MEPC, in the majority of synapses it could be described by the sum of two (n=34) or three (n=9) exponentials: monoexponential EPCs were noted in only three cases. The nature and duration of the EPC decay depended on its quantal content. After a reduction in the quantal content a three-exponential EPC decay could be successively reduced to a two- and a mono-exponential decay. A ,slow, component of the EPC decay, unlike the MEPC decay, was extremely sensitive to changes in the membrane potential, and extracellular magnesium ion concentration. When the cholinoceptors were irreversibly blocked by -bungarotoxin the MEPC decay accelerated, and the monoexponential EPC decay initially slowed down before accelerating, but even during a profound blockade the open-times of the ion channels were not affected. It therefore appears that during the generation of multiquantal EPCs when AChE is inhibited, not only does the synchronicity of the ion channel opening change, but so do their kinetics, possibly because of ion channel blockade by endogenous acetylcholine.S. V. Kurashov Institute of Medicine, Russian Ministry of Public Health, Kazan. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 269–279, May–June, 1992.  相似文献   

15.
To test our present quantitative knowledge of nicotinic transmission, we reconstruct the postsynaptic conductance change that results after a presynaptic nerve terminal liberates a quantum of acetylcholine (ACh) into the synaptic cleft. The theory assumes that ACh appears suddenly in the cleft and that is subsequent fate is determined by radial diffusion, by enzymatic hydrolysis, and by binding to receptors. Each receptor has one channel and two ACh binding sites; the channel opens when both sites are occupied and the rate-limiting step id the binding and dissociation of the second ACh molecule. The calculations reproduce the experimentally measured growth phase (200 microseconds), peak number of open channels (2,000), and exponential decay phase. The time constant of the decay phase exceeds the channel duration by approximately equal to 20%. The normal event is highly localized: at the peak, two-thirds of the open channels are within an area of 0.15 micrometer 2. This represents 75% of the available channels within this area. The model also simulates voltage and temperature dependence and effects of inactivating esterase and receptors. The calculations show that in the absence of esterase, transmitter is buffered by binding to receptors and the postsynaptic response can be potentiated.  相似文献   

16.
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.  相似文献   

17.
Miniature end-plate currents (MEPC) were recorded in voltage clamped muscle fibers of the rat diaphragm at different degrees of acetylcholinesterase (AChE) inhibition with galanthamine. A model has been suggested connecting the increase in MEPC amplitude with the concentration of a competitive reversible AChE inhibitor. Using the model suggested, the changes in the junctional AChE activity inhibited with different concentrations of galanthamine were estimated. The calculated value of the inhibitory galanthamine constant is 2.8 X 10(-7) M.  相似文献   

18.
In experiments on adult albino rats the authors used the substances BW 284 C51 (1.5-bis(allyldimethylammoniumphenyl)-pentane-3-one-dibromide) as a specific inhibitor of acetylcholinesterase (AChE) and ethopropazine (10-(2-diethylaminopropyl) phenothiazine hydrochloride) as a specific inhibitor of butyrylcholinesterase (BuChE) to determine the two enzyme activities in atrial homogenates and to investigate changes after AChE or BuChE inhibition of the negative chronotropic effect of acetylcholine (ACh) on atria incubated in vitro. AChE accounted for only 12% and BuChE for 88% of the total ability of atrial homogenates to hydrolyse acetylcholine. The concentration of exogenous ACh needed to reduce the spontaneous frequency of contractions of the isolated right atrium by 30, 60, or 90/min fell by 78%, 79% and 84% respectively after BW 284 C51 inhibition of AChE and by 95%, 94% and 94% after simultaneous inhibition of AChE and BuChE. The significance of AChE in control of the negative chronotropic effect of ACh is thus evidently significantly greater than would correspond to the percentual proportion of AChE in cholinesterase activities in the atria of the rat heart. In can be assumed that AChE is functionally associated with parasympathetic innervation of the heart and that it is probably present in a high concentration in the primary pacemaker region.  相似文献   

19.
Hydrolysis, synthesis, and release of acetylcholine in the isolated heart   总被引:1,自引:0,他引:1  
The occurrence of unhydrolyzed acetylcholine (ACh) in the cardiac perfusate during vagal stimulation in the absence of cholinesterase inhibition has been demonstrated by several methods. Because some ACh was found unhydrolyzed in the extracellular space for several seconds after vagal stimulation (half-time of decay 2.5 s), it appears that the prolonged time course of the cardiac responses to bursts of vagal activity is determined by a slow rate of transmitter inactivation (diffusion plus hydrolysis) in addition to slowly operating postsynaptic mechanisms mediated by activation of the muscarinic receptor. The neuronal uptake of choline in isolated heart preparations was found to be Na+ dependent, sensitive to hemicholinium 3, and activated by vagal stimulation. Activation occurred after a delay of 1 or 2 min and slowly faded within 5 min after stimulation. Resting release of ACh was insensitive to extracellular Ca2+ and to muscarinic feedback inhibition, in contrast to the evoked transmitter release. Inasmuch as atropine increased ACh release by vagal and field stimulation to the same extent, muscarinic feedback inhibition is likely to occur at postganglionic parasympathetic neurons. Adrenergic agonists and propranolol did not significantly change the release of ACh.  相似文献   

20.
Liquid and gas chromatography are commonly used to measure organophosphorus pesticides. However, these methods are relatively time consuming and require a tedious sample pretreatment. Here, we applied the localized surface plasmon resonance (LSPR) of gold nanoparticles covalently coupled with acetylcholinesterase (AChE) to create a biosensor for detecting an example of serial signals responding to paraoxon in the range of 1-100 ppb by an AChE modified LSPR sensor immersing in a 0.05 mM ACh solution. The underlying mechanism is that paraoxon prevents acetylcholine chloride (ACh) reacting with AChE by destroying the OH bond of serine in AChE. We found that the AChE modified LSPR sensors prepared by incubation with 12.5 mU/mL of AChE in phosphate buffer solution at pH 8.5 room temperature for 14 h have the best linear inhibition response with a 0.234 ppb limit of paraoxon detection. A 14% of inhibition on the sensor corresponds to the change of paraoxon concentration from 1 to 100 ppb. The sensor remained 94% of its original activity after six cycles of inhibition with 500 ppb paraoxon followed with reactivation of AChE by 0.5 mM 2-pyriding-aldoxime methoiodide (2-PAM). In addition, the sensor retains activity and gives reproducible results after storage in dry state at 4 degrees C for 60 days. In conclusion, we demonstrated that the AChE modified LSPR sensors can be used to determine the concentration of paraoxon biosensor with high sensitive and stable characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号