首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential independent limiting flux of hydrated Tl(+) ions through gramicidin (GR) channels incorporated in phospholipid monolayers self assembled on a hanging mercury-drop electrode is shown to be controlled both by diffusion and by a dehydration step. Conversely, the potential independent limiting flux of dehydrated Tl(+) ions stemming from Tl amalgam electro-oxidation is exclusively controlled by diffusion of thallium atoms within the amalgam. Modulating the charge on the polar heads of dioleoylphosphatidylserine (DOPS) by changing pH affects the limiting flux of hydrated Tl(+) ions to a notable extent, primarily by electrostatic interactions. The dipole potential of DOPS and dioleoylphosphatidylcholine (DOPC), positive toward the hydrocarbon tails, does not hinder the translocation step of Tl(+) ions to such an extent as to make it rate limiting. Consequently, incorporation in the lipid monolayer of phloretin, which decreases such a positive dipole potential, does not affect the kinetics of Tl(+) flux through GR channels. In contrast, the increase in the positive dipole potential produced by the incorporation of ketocholestanol causes the translocation step to contribute to the rate of the overall process. A model providing a quantitative interpretation of the kinetics of diffusion, dehydration-hydration, translocation, and charge transfer of the Tl(+)/Tl(0)(Hg) couple through GC channels incorporated in mercury-supported phospholipid monolayers is provided. A cut-off disk model yielding the profile of the local electrostatic potential created by an array of oriented dipoles located in the lipid monolayer along the axis of a cylindrical ion channel is developed.  相似文献   

2.
N E Shvinka  G Caffier 《Biofizika》1983,28(6):1006-1009
Conductance of single fibres from m. ileofibularis of Rana esculenta was studied in isotonic K2SO4 solution under constant current conditions using the double sucrose gap method. It was found that Tl+ (at concentrations 5, 10, and 20 mM) blocked K+ currents in the gramicidin channel. The decrease of K+ conductance caused by Tl+ was associated with the changes of the membrane potential. Both the decrease of K+ conductance and value of permeability ratio (PTl/PK) found from the membrane potential changes depended on Tl+ concentration in the bathing solution. No effect of Tl+ on the potassium channels was registered in the absence of gramicidin channels. The Tl+ block described here proves the existence of Tl+ ion binding within gramicidin channels of the muscle membrane and interactions among ions in the channels.  相似文献   

3.
The behavior of two gramicidins incorporated into lipid monolayers is analyzed on the basis of the force and surface potential area curves. It is shown that the position of the gramicidins (helical axis parallel or perpendicular to the interface) depends on the monolayer pressure and that these molecules are not miscible with dioleoylphosphatidylcholine. Surface potential measurements suggest the existence of a relationship between the single channel characteristics and the surface potential and indicate that the tryptophans are essential for lowering the lipid surface potential in agreement with the single channel behaviour of both gramicidin A and gramicidin M.  相似文献   

4.
Structure and dynamics of ion transport through gramicidin A.   总被引:19,自引:13,他引:6       下载免费PDF全文
Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed.  相似文献   

5.
This study reports the first direct observation of multiple occupancy of the gramicidin A channel by Tl+ ions. 205Tl NMR has been used to study the equilibrium binding of Tl+ by gramicidin A incorporated in sonicated dimyristoylphosphatidylcholine vesicles. It is shown that only multiple-channel occupancy can account for the 205Tl chemical shifts measured. The data are analyzed to yield the equilibrium association constants of 450-600 and 5-20 M-1 for the binding of the first and the second ions at 34 degrees C, respectively.  相似文献   

6.
7.
A proof-of-principle experiment to inject a sub-attomole amount of a channel compound into a bilayer membrane is described. The system is based on reductive cleavage of a self-assembled gold-thiol monolayer. In 'macroscopic' experiments, 11-biphenyloxyundecane thiol formed well-ordered monolayers by open-circuit or controlled potential deposition. The products of reductive release were determined by chromatographic analysis. In DMF, the sole reduction product is the corresponding disulfide. In acetonitrile and water, only the thiol is detected. The current efficiency is low due to competing electrolysis of water, and to the low solubility of the released thiol or disulfide layer. On a 'microscopic' scale, the half ester of dithiodibutyric acid with gramicidin was deposited on a gold microelectrode under open circuit conditions. The thoroughly washed microelectrode, placed in proximity to a bilayer, released gramicidin only following a 100 ms pulse of reducing potential. The transfer efficiency of this method for controlled positioning of ion channels is estimated to be better than 1 part in 10(5).  相似文献   

8.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

9.
B Turano  M Pear    D Busath 《Biophysical journal》1992,63(1):152-161
Empirical energy function calculations were used to evaluate the effects of minimization on the structure of a gramicidin A channel and to analyze the energies of interaction between three cations (guanidinium, acetamidinium, formamidinium) and the channel as a function of position along the channel axis. The energy minimized model of the gramicidin channel, which was based on the results of Venkatachalam and Urry (1983), has a constriction at the channel entrance. If the channel is not allowed to relax in the presence of the ions (rigid model), there is a large potential energy barrier for all three cations. The barrier varies with cation size and is due to high van der Waals and ion deformation energies. If the channel is minimized in the presence of the ions, the potential energy barrier to formamidinium entry is almost eliminated, but a residual barrier remains for guanidinium and acetamidinium. The residual barrier is primarily due, not to the expansion of the helix, but, to the disruption of hydrogen bonds between the terminal ethanoloamine and the next turn of the helix which occurs when the carbonyls of the outer turn of the helix librate inward toward the ion as it enters the channel. The residual potential energy barriers could be a possible explanation for the measured selectivity of gramicidin for formamidinium over guanidinium. The results of this full-atomic model address the applicability of the size-exclusion concept for the selectivity of the gramicidin channel.  相似文献   

10.
To further investigate the effect of single amino acid substitution on the structure and function of the gramicidin channel, an analogue of gramicidin A (GA) has been synthesized in which Trp(15) is replaced by Gly in the critical aqueous interface and cation binding region. The structure of Gly(15)-GA incorporated into SDS micelles has been determined using a combination of 2D-NMR spectroscopy and molecular modeling. Like the parent GA, Gly(15)-GA forms a dimeric channel composed of two single-stranded, right-handed beta(6.3)-helices joined by hydrogen bonds between their N-termini. The replacement of Trp(15) by Gly does not have a significant effect on backbone structure or side chain conformations with the exception of Trp(11) in which the indole ring is rotated away from the channel axis. Measurement of the equilibrium binding constants and Delta G for the binding of monovalent cations to GA and Gly(15)-GA channels incorporated into PC vesicles using (205)Tl NMR spectroscopy shows that monovalent cations bind much more weakly to the Gly(15)-GA channel entrance than to GA channels. Utilizing the magnetization inversion transfer NMR technique, the transport of Na(+) ions through GA and Gly(15)-GA channels incorporated into PC/PG vesicles has been investigated. The Gly(15) substitution produces an increase in the activation enthalpy of transport and thus a significant decrease in the transport rate of the Na(+) ion is observed. The single-channel appearances show that the conducting channels have a single, well-defined structure. Consistent with the NMR results, the single-channel conductances are reduced by 30% and the lifetimes by 70%. It is concluded that the decrease in cation binding, transport, and conductance in Gly(15)-GA results from the removal of the Trp(15) dipole and, to a lesser extent, the change in orientation of Trp(11).  相似文献   

11.
We studied the effect of monovalent thallium ion (Tl(+)) on the gating of single Kir2.1 channels, which open and close spontaneously at a constant membrane potential. In cell-attached recordings of single-channel inward current, changing the external permeant ion from K(+) to Tl(+) decreases the mean open-time by approximately 20-fold. Furthermore, the channel resides predominantly at a subconductance level, which results from a slow decay (tau = 2.7 ms at -100 mV) from the fully open level immediately following channel opening. Mutation of a pore-lining cysteine (C169) to valine abolishes the slow decay and subconductance level, and single-channel recordings from channels formed by tandem tetramers containing one to three C169V mutant subunits indicate that Tl(+) must interact with at least three C169 residues to induce these effects. However, the C169V mutation does not alter the single-channel closing kinetics of Tl(+) current. These results suggest that Tl(+) ions change the conformation of the ion conduction pathway during permeation and alter gating by two distinct mechanisms. First, they interact with the thiolate groups of C169 lining the cavity to induce conformational changes of the ion passageway, and thereby produce a slow decay of single-channel current and a dominant subconductance state. Second, they interact more strongly than K(+) with the main chain carbonyl oxygens lining the selectivity filter to destabilize the open state of the channel and, thus, alter the open/close kinetics of gating. In addition to altering gating, Tl(+) greatly diminishes Ba(2+) block. The unblocking rate of Ba(2+) is increased by >22-fold when the external permeant ion is switched from K(+) to Tl(+) regardless of the direction of Ba(2+) exit. This effect cannot be explained solely by ion-ion interactions, but is consistent with the notion that Tl(+) induces conformational changes in the selectivity filter.  相似文献   

12.
The rigid force fields currently used in molecular dynamics (MD) simulations of biomolecules are optimized for globular proteins. Whether they can also be used in MD simulations of membrane proteins is an important issue that needs to be resolved. Here we address this issue using the gramicidin A channel, which provides an ideal test case because of the simplicity of its structure and the availability of a wealth of functional data. Permeation properties of gramicidin A can be summarized as "it conducts monovalent cations, rejects anions, and binds divalent cations." Hence, a comprehensive test should consider the energetics of permeation for all three types of ions. To that end, we construct the potential of mean force for K(+), Cl(-), and Ca(2+) ions along the channel axis. For an independent check of the potential-of-mean-force results, we also calculate the free energy differences for these ions at the channel center and binding sites relative to bulk. We find that "rejection of anions" is satisfied but there are difficulties in accommodating the other two properties using the current MD force fields.  相似文献   

13.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin. The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1-2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

14.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin.The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1–2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

15.
The lipodepsipeptide syringomycin E (SR-E) interacts with two mercury-supported biomimetic membranes, which consist of a self-assembled phospholipid monolayer (SAM) and of a tethered bilayer lipid membrane (tBLM) separated from the mercury surface by a hydrophilic tetraethyleneoxy (TEO) spacer that acts as an ionic reservoir. SR-E interacts more rapidly and effectively with a SAM of dioleoylphosphatidylserine (DOPS) than with one of dioleoylphosphatidylcholine (DOPC). The proximal lipid monolayer of the tBLM has no polar head region, being linked to the TEO spacer via an ether bond, while the distal monolayer consists of either a DOPC or a DOPS leaflet. The ion flow into or out of the spacer through the lipid bilayer moiety of the tBLM was monitored by potential step chronocoulometry and cyclic voltammetry. With the distal monolayer bathed by aqueous 0.1 M KCl and 0.8 μM SR-E, an ion flow in two stages was monitored with DOPC at pH 3 and 5.4 and with DOPS at pH 3, while a single stage was observed with DOPS at pH 5.4. This behavior was compared with that already described at conventional bilayer lipid membranes. The sigmoidal shape of the chronocoulometric charge transients points to an aggregation of SR-E monomers forming an ion channel via a mechanism of nucleation and growth. The ion flow is mainly determined by potassium ions, and is inhibited by calcium ions. The contribution to the transmembrane potential from the distal leaflet depends more on the nature of the lipid than that of the ion channel.  相似文献   

16.
The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side.  相似文献   

17.
Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidin A, B, or C under these experimental conditions. In this system, the Tl+ equilibrium binding constant is 582 +/- 20 M-1 for gramicidin 1949 +/- 100 M-1 for gramicidin B, and 390 +/- 20 M-1 for gramicidin C. Gramicidin B not only binds Tl+ more strongly but it is also in a different conformational state than that of A and C, as shown by Circular Dichroism spectroscopy. The 205Tl NMR technique can now be extended to determinations of binding constants of other cations to gramicidin by competition studies using a 205Tl probe.  相似文献   

18.
Three different gramicidin A analogues bearing acyl chains of various length on the ethanolamine moiety have been studied by investigating their single channel behaviour and their monolayer properties. It is shown that the single channel conductance does not depend on the substitution of the ethanolamine OH group and that the channel lifetime is roughly proportional to the length of the alkyl chain. The monolayer study indicates that acylation of gramicidin A produces compounds which have medium-dependent conformations. These acylated compounds are miscible with lipids, while GA is not, and the surface potential is not modified by the esterification of the alcohol group. Offprint requests to: F. Heitz  相似文献   

19.
To investigate the process of ion permeation in an ion channel systematically, we performed molecular dynamics (MD) simulations on a gramicidin A (GA)-phospholipid model system with an ion in the channel pore region. Each of the three types of ions (Ca2+, Na+ Cl-) was placed at five different positions along the channel axis by replacing a water molecule. MD simulations were performed on each system at constant pressure and constant temperature. The MD trajectories showed that the Ca2+ and Na+ ions could stably fluctuate in the pore region, but the Cl- ion was pushed out because of the unfavorable interaction with the channel. This result is consistent with experimental data. It was also found that the conformation of the GA channel underwent a significant change due to the presence of the ion, and the two ends of the GA monomer were more flexible than its middle region. In particular, the dramatic change of local pore radius near the ion indicated this kind of deformation. The strong interaction between the ion and carbonyl oxygen atoms of GA was the major contributor to this change. Furthermore, it was found that the ethanolamine group of the GA molecule was the most flexible group in the GA channel and often observed to block the entrance of GA. These results imply that the deformation of channel structure plays a very important factor in ion permeation, and the ethanolamine group may play a key role in regulating ion entry into the pore. In conclusion, our results indicate that the ion has a dominant influence on the structure of the GA channel and that the flexibility of the ion channel is a crucial factor in the ion permeation process.  相似文献   

20.
A controlled exchange of calcium between the extracellular space (mM Ca2+) and the neuroplasm (microM Ca2+) is considered to be an essential prerequisite for almost every stage of neuronal activity. Our research interest is focused on those compounds, which due to their physico-chemical properties and localization within the synaptic membrane might fulfill the task as neuromodulators for functional synaptic proteins. Because of this specific binding properties towards calcium and their peculiar interactions with calcium in model systems gangliosides (amphiphilic sialic acid containing glycosphingolipids) are favorite candidates for a functional involvement in synaptic transmission of information. In this study we used monolayers to investigate the molecular packing and surface potential at the air/water interface, the interaction of gangliosides with the depsipeptide valinomycin (= monovalent ion carrier), and its influenceability by calcium. Furthermore we looked at calcium effects on the single channel conductance and mean channel life-time of the monovalent ion channel gramicidin A in mixed PC/ganglioside bilayers. In pure ganglioside monolayers the addition of 0.01 mM Ca2+ induces monolayer condensation, a rise in collapse pressure (= higher film stability), a shift of phase transition (= change of conformation), and a more negative head group potential (change of electric properties). In mixed ganglioside-valinomycin monolayers the addition of Ca2+ causes phase separation and/or aggregate formation between the ganglioside and the peptide. Single channel conductance fluctuations as well as mean channel life-time were analyzed for gramicidin A incorporated into binary mixed black lipid membranes of negatively charged gangliosides (GM1, GD1a, GT1b, GMix) and neutral lecithin (DOPC) in different molar ratios. At monovalent electrolyte concentrations up to < 250 mM CsCl the single channel conductance was significantly larger in the negatively charged mixed DOPC/ganglioside membranes than in the neutral DOPC membrane. Additionally, in the presence of gangliosides the mean channel life-time is increased. The addition of calcium (0.05 mM) induced a reduction of single channel conductance of gramicidin A in DOPC- and mixed DOPC/ganglioside membranes. These physico-chemical data in connection with new electromicroscopical evidences for a precise localization of calcium, a calcium pump (Ca(2+)-ATPase), a clustered arrangement of gangliosides in synaptic terminals, and biochemical results with regard to activatory nature of exogenous gangliosides for neuronal protein phosphorylation and ATPases, support the hypothesis of a modulatory function of gangliosides in synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号