首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study on the effect of anandamide (AEA) in energy coupling of rat liver mitochondria is presented. Micromolar concentrations of AEA, while almost ineffective on substrate supported oxygen consumption rate and on uncoupler stimulated respiration, strongly inhibited the respiratory state III. AEA did not change the rate and the extent of substrate generated membrane potential, but markedly delayed rebuilding by respiration of the potential collapsed by ADP addition. Overall, these data suggest that anandamide inhibits the oxidative phosphorylation process. Direct measurement of the FoF1 ATP synthase activity showed that the oligomycin sensitive ATP synthesis was inhibited by AEA, (IC50, 2.5 μM), while the ATP hydrolase activity was unaffected. Consistently, AEA did not change the membrane potential generated by ATP hydrolysis.  相似文献   

2.
3.
4.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The reaction of fluorescamine with ammonia, benzylamine, o,p-dimethylbenzylamine, 2-phenylethylamine, p-aminobenzoic acid, and the mycosamine-containing macrolide antibiotic, amphotericin B, yield compounds which induce significant effects on mitochondrial activities. From their effects on energy-yielding processes which lead to transmembranous proton movements, the compounds may be divided into three classes. While all modifiers significantly inhibit proton movement induced by both ATP hydrolysis and electron transfer in mitochondria, their influence on the primary energy yielding steps are quite different. Class I modifiers, e.g., the compound made from amphotericin B, inhibit electron transfer but have no effect on the Pi release associated with ATP hydrolysis. Class II modifiers, e.g., the compound made from benzylamine, inhibit respiration but stimulate Pi release. Class III modifiers, e.g., the compound made from p-aminobenzoic acid, on the other hand, only slightly increase Pi release but have no effect on redox reactions. These and other effects of the modifiers are taken to mean that the proton movements and their associated energy-yielding processes are only linked indirectly. The effects of the modifiers on State 3 mitochondrial activities were also investigated. Although all the modifiers decrease the rates of both State 3 respiration and its coupled ATP synthesis, the efficiency of energy conversion measured by the P/O ratio remains unaltered.  相似文献   

6.
7.
8.
9.
10.
We proposed that inhibition of mitochondrial adenine nucleotide translocator (ANT) by long chain acyl-CoA (LCAC) underlies the mechanism associating obesity and type 2 diabetes. Here we test that after long-term exposure to a high-fat diet (HFD): (i) there is no adaptation of the mitochondrial compartment that would hinder such ANT inhibition, and (ii) ANT has significant control of the relevant aspects of oxidative phosphorylation. After 7 weeks, HFD induced a 24+/-6% increase in hepatic LCAC concentration and accumulation of the oxidative stress marker N(epsilon)-(carboxymethyl)lysine. HFD did not significantly affect mitochondrial copy number, oxygen uptake, membrane potential (Deltapsi), ADP/O ratio, and the content of coenzyme Q(9), cytochromes b and a+a(3). Modular kinetic analysis showed that the kinetics of substrate oxidation, phosphorylation, proton leak, ATP-production and ATP-consumption were not influenced significantly. After HFD-feeding ANT exerted considerable control over oxygen uptake (control coefficient C=0.14) and phosphorylation fluxes (C=0.15), extra- (C=0.23) and intramitochondrial (C=-0.56) ATP/ADP ratios, and Deltapsi (C=-0.11). We conclude that although HFD induces accumulation of LCAC and N(epsilon)-(carboxymethyl)lysine, oxidative phosphorylation does not adapt to these metabolic challenges. Furthermore, ANT retains control of fluxes and intermediates, making inhibition of this enzyme a more probable link between obesity and type 2 diabetes.  相似文献   

11.
The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.  相似文献   

12.
Crystal violet exhibited characteristics of an uncoupler of oxidative phosphorylation, i.e. it released respiratory control, hindered ATP synthesis, enhanced ATPase activity, and produced swelling of isolated rat liver mitochondria. Maximal stimulation of respiration, ATPase activity, and swelling was observed at a concentration of 40 microM. The inhibition of State 3 respiration by oligomycin was released by crystal violet. High concentrations of crystal violet inhibited mitochondrial respiration. The uncoupling effect of crystal violet required inorganic phosphate and was abolished by N-ethylmaleimide. The adenine nucleotides ADP and ATP protected mitochondria from uncoupling by the dye. The dye taken up by mitochondria was released into the incubation medium on induction of uncoupling. In the absence of phosphate, the dye did not cause uncoupling, but its retention was much greater than in the presence of phosphate. Crystal violet is suggested to induce uncoupling by acting on the membrane, rather than by its electrophoretic transfer into the mitochondria.  相似文献   

13.
14.
The dynamics of primary aliphatic amines (ethylamine, propylamine) effects on the processes of oxidative phosphorylation in rat liver mitochondria was estimated. The inhibiting action of ethylamine and propylamine on the oxidative phosphorylation processes in the rat liver mitochondria was revealed.  相似文献   

15.
Aminoacetone (AA) is a threonine metabolite accumulated in threoninemia, cri-du-chat, and diabetes, where it contributes toward the formation of cytotoxic and genotoxic methylglyoxal (MG). Oxyradicals yielded from iron-catalyzed AA aerobic oxidation to MG are shown here to promote Ca2+ -mediated mitochondrial membrane permeabilization in an AA dose-dependent way. The inhibitory effect of added EGTA, cyclosporin A, Mg2+, and DTT observed in this study suggests the formation of transition pores in the inner mitochondrial membrane by AA, associated with thiol protein aggregation. That the mitochondrial iron pool plays a coadjutant role in the transition of mitochondrial permeability is indicated by the dramatic inhibitory effect of added o-phenanthroline. Iron released from ferritin by AA oxidation products--superoxide anion and AA enolyl radicals--is shown to act as an alternative source of ferrous iron, intensifying the mitochondrial damage. These findings may contribute to clarify the role of accumulated AA and iron overload in the mitochondrial oxidative damage reportedly occurring in diabetes mellitus.  相似文献   

16.
The efficiency of oxidative phosphorylation was compared between rats chronically fed with ethanol and controls. (i) Results showed that the liver mitochondria state 4 respiratory rate was strongly inhibited, while the corresponding proton-motive force was not affected; (ii) the cytochrome oxidase content and activity were decreased and (iii) the oxidative-phosphorylation yield was increased in the ethanol exposed group. Furthermore, oxidative phosphorylation at coupling site II was not affected by ethanol. Cytochrome oxidase inhibition by sodium-azide mimicked the effects of ethanol intoxication in control mitochondria. This indicates that the decrease in cytochrome oxidase activity induced by ethanol intoxication directly increases the efficiency of oxidative phosphorylation.  相似文献   

17.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号