首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of expression of genes encoding mycobacterial antigens in Francisella tularensis 15/10 vaccine strain cells has been shown for the first time. To obtain stable and effective expression of mycobacterial antigens in the F. tularensis cells, the plasmid vector pPMC1 and hybrid genes consisting of the leader part FL of the F. tularensis membrane protein FopA and structural moieties of the mature protein Ag85B or the fused protein Ag85B-ESAT-6 were constructed. Recombinant strains F. tularensis RVp17 and RVp18 expressing protective mycobacterial antigens in the fused proteins FL-Ag85B and FL-Ag85B-ESAT-6, respectively, were obtained. Expression of the protective mycobacterial antigens in F. tularensis was analyzed using specific antisera to the recombinant proteins Ag85-(His)6 and ESAT-6-(His)6 isolated from Escherichia coli producer strains created on the basis of the pET23b(+) and pET24b(+) vectors. The expression of heterologous protective antigens in F. tularensis 15/10 is promising for creation of live recombinant anti-tuberculosis vaccines on the basis of the tularemia vaccine strain.  相似文献   

2.
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.  相似文献   

3.
Genetic immunity is a new promising approach for the development of novel tuberculosis vaccines. In this study, it is shown that DNA vaccines expressing the fusion protein of antigen 85B (Ag85B) and early secreted antigenic target 6-kDa antigen (ESAT6) can induce high levels of specific IgG2a antibody subtype in the mice. With the prolongation of postimmunization time, the levels of IgG2a antibody decrease gradually. Although a high-level specific IgG2a antibody subtype is also elicited by classical BCG, the ratio of antibody subtypes IgG2a to IgG1 changes 4 weeks after immunization, and IgG1 is gradually shifted to the main antibody subtype. DNA vaccines also elicit cellular immunity as shown by specific spleen lymphocytes proliferation to Ag85B or ESAT6 protein and the production of high levels of IFN-gamma and IL-2, which is similar to that elicited by BCG. Vaccination of mice with DNA vaccines expressing the fusion protein Ag85B-ESAT6 results in a significant level of protection against the subsequent high-dose challenge with virulent Mycobacterium tuberculosis (MTB) H37Rv. Dramatic reduction in the number of MTB colony-forming units in the spleens and lungs is observed. Pathological examination showed that recombinant plasmid and BCG groups have only minor damage and organizational structures that are kept relatively complete, while in the control group, spleens and lungs are damaged seriously. Therefore, although the reducing degree of mycobacterial loads in the organ of mice immunized with recombinant plasmid is not more than that of BCG, through the analysis of pathological changes, we may conclude that the protective effect provided by DNA vaccine expressing the Ag85B-ESAT6 fusion protein is equivalent to that afforded by the classical BCG.  相似文献   

4.
近年来基于重组酿酒酵母全细胞的新型疫苗研究报道不断出现。以结核杆菌重要保护抗原ESAT6和Ag85B为对象,采用pHR酿酒酵母表达系统,构建了两种分别表达ESAT6-Ag85B(EA)和IFN-γ-ESAT6-Ag85B(IEA)融合抗原的重组酿酒酵母Yeast-EA和Yeast-IEA。重组酵母以皮下注射方式免疫小鼠后,小鼠产生高水平Ag85B特异性抗体,淋巴细胞分泌IFN-γ、IL-2等细胞因子,无IL-4产生,发生Th1型细胞免疫应答,其中Yeast-IEA效应更强,优于传统的BCG疫苗。实验证实重组酵母能够刺激树突状细胞的成熟分化。研究结果显示结核分枝杆菌抗原重组酿酒酵母全细胞疫苗具有发展成为新型抗结核疫苗的潜力。  相似文献   

5.
Many epidemiological studies have suggested that the recent increase in prevalence and severity of allergic diseases such as asthma is inversely correlated with Mycobacterium bovis bacillus Calmette Guerin (BCG) vaccination. However, the underlying mechanisms by which mycobacterial components suppress allergic diseases are not yet fully understood. Here we showed the inhibitory mechanisms for development of allergic airway inflammation by using highly purified recombinant Ag85B (rAg85B), which is one of the major protein antigens secreted from M. tuberculosis. Ag85B is thought to be a single immunogenic protein that can elicit a strong Th1-type immune response in hosts infected with mycobacteria, including individuals vaccinated with BCG. Administration of rAg85B showed a strong inhibitory effect on the development of allergic airway inflammation with induction of Th1-response and IL-17and IL-22 production. Both cytokines induced by rAg85B were involved in the induction of Th17-related cytokine-production innate immune cells in the lung. Administration of neutralizing antibodies to IL-17 or IL-22 in rAg85B-treated mice revealed that IL-17 induced the infiltration of neutrophils in BAL fluid and that allergen-induced bronchial eosinophilia was inhibited by IL-22. Furthermore, enhancement of the expression of genes associated with tissue homeostasis and wound healing was observed in bronchial tissues after rAg85B administration in a Th17-related cytokine dependent manner. The results of this study provide evidence for the potential usefulness of rAg85B as a novel approach for anti-allergic effect and tissue repair other than the role as a conventional TB vaccine.  相似文献   

6.

Background

There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-γ) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN-γ responses to BCG in this age group are poorly described. Characterisation of IFN-γ responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy.

Methodology/Principal Findings

236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-γ, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89–98% depending on the antigen) made IFN-γ responses and there was significant correlation between IFN-γ responses to the different mycobacterial antigens (Spearman''s coefficient ranged from 0.340 to 0.675, p = 10−6–10−22). IL-13 and IL-5 responses were generally low and there were more non-responders (33–75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens

Conclusions/Significance

Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN-γ responses.  相似文献   

7.
Fan X  Gao Q  Fu R 《Microbiological research》2009,164(4):374-382
BALB/c mice were vaccinated three times (2-week intervals) with plasmid DNA separately encoding antigen Ag85B, ESAT-6 or Ag85A from Mycobacterium tuberculosis. The protective efficacy of these DNA vaccines against intravenous M. tuberculosis H37Rv challenge infection was measured by counting bacterial loads in spleen and lung and recording changes in lung pathology. The splenocyte proliferative response to the corresponding antigens and antigen-specific interferon (IFN)-γ secreted by splenocytes of the vaccinated mice were also detected. We found a clear hierarchy of protective efficacies among the three DNA vaccines tested in this study. Plasmid DNA encoding Ag85A provided the strongest protection and showed the least change in lung pathology, followed by plasmid DNAs encoding Ag85B and ESAT-6. However, DNA-85B reduced comparative bacterial load in lung tissue, as did DNA-85A. Compared to the control group, protective efficacies conferred by different DNA vaccines were consistent with the lymphoproliferative responses to the corresponding antigens as well as the secretions of antigen-specific IFN-γ. Our study demonstrates that both Ag85A and Ag85B are the most promising of the candidate antigens tested for future TB vaccine development.  相似文献   

8.
BCG therapy remains at the forefront of immunotherapy for treating patients with superficial bladder cancer. The high incidence of local side effects and the presence of non-responder diseases have led to efforts to improve the therapy. Hence, we proposed that an auxotrophic recombinant BCG strain overexpressing Ag85B (BCG ?leuD/Ag85B), could enhance the cytotoxicity to the human bladder carcinoma cell line 5637. The rBCG was generated using an expression plasmid encoding the mycobacterial antigen Ag85B to transform a BCG ?leuD strain. The inhibitory effect of BCG ?leuD/Ag85B on 5637 cells was determined by the MTT method, morphology observation and a LIVE/DEAD assay. Gene expression profiles for apoptotic, cell cycle-related and oxidative stress-related genes were investigated by qRT-PCR. Bax, bcl-2 and p53 induction by BCG ?leuD/Ag85B treatment was evaluated by Western blotting. BCG ?leuD/Ag85B revealed a superior cytotoxicity effect compared to the control strains used in this study. The results showed that the expression level of pro-apoptotic and cell cycle-related genes increased after BCG ?leuD/Ag85B treatment, whereas the mRNA levels of anti-apoptotic genes decreased. Interestingly, BCG ?leuD/Ag85B also increased the mRNA level of antioxidant enzymes in the bladder cancer cell line. Bax and p53 proteins levels increased following treatment. In conclusion, these results suggest that treatment with BCG ?leuD/Ag85B enhances cytotoxicity for superficial bladder cancer cells in vitro. Therefore, rBCG therapy may have potential benefits in the treatment of bladder cancer.  相似文献   

9.
In spite of major advances in our understanding of the biology and immunology of tuberculosis, the incidence of the disease has not reduced in most parts of the world. In an attempt to improve the protective efficacy of Mycobacterium bovis bacille Calmette-Guérin (BCG), we have developed a generic vector system, pSD5, for expression of genes at varying levels in mycobacteria. In this study, we have cloned and overexpressed three immunodominant secretory antigens of M. tuberculosis, 85A, 85B and 85C, belonging to the antigen 85 complex. All the genes were cloned under the control of a battery of mycobacterial promoters of varying strength. The expression was analysed in the fast-growing strain M. smegmatis and the slow-growing vaccine strain M. bovis BCG. The recombinant BCG constructs were able to express the antigens at high levels and the majority of the expressed antigens was secreted into the medium. These results show that by using this strategy the recombinant BCG approach can be successfully used for the development of candidate vaccines against infections associated with mycobacteria as well as other pathogens.  相似文献   

10.
IFN-gamma responses to Mycobacterium tuberculosis antigens ESAT-6 and CFP-10 have been proposed as specific markers of M. tuberculosis infection. Monokine induced by gamma interferon (MIG/CXCL9) has been shown to be expressed by IFN-gamma stimulated mononuclear cells and to attract activated T-cells through the chemokine receptor CXCR3. Since MIG is induced early in the response to IFN-gamma, measuring MIG may provide an interesting marker to assess downstream IFN-gamma induced responses, in contrast to assays that mainly focus on quantifying production of IFN-gamma per se. We, therefore, investigated MIG and IFN-gamma responses to a fusion protein of ESAT-6 and CFP-10, and compared responses to the conserved mycobacterial antigen 85B (Ag85B) and purified protein derivative (PPD) of M. tuberculosis, in 29 BCG vaccine controls and 24 TB patients. IFN-gamma secreting cells were determined by ELISPOT, and MIG production was measured by ELISA and flow cytometry. Production of MIG in response to ESAT-6/CFP-10, Ag85B and PPD correlated overall with increased numbers of IFN-gamma secreting cells (r=0.55, P<0.0001). A significant increase was noted among patients compared to controls in the secretion of IFN-gamma and MIG following stimulation with ESAT-6/CFP-10 or PPD (P<0.05). Moreover, MIG intracellular expression was higher in TB patients compared to BCG vaccines (P<0.05) in response to ESAT-6/CFP-10 or PPD. We conclude that MIG production correlates significantly with enhanced T-cell IFN-gamma production induced by M. tuberculosis-specific antigens ESAT-6/CFP-10. These results point to MIG as a potential novel biomarker that may be helpful in assessing downstream responses induced by IFN-gamma in TB.  相似文献   

11.
A better understanding of mucosal immunity is required to develop more protective vaccines against Mycobacterium tuberculosis. We developed a murine aerosol challenge model to investigate responses capable of protecting against mucosal infection. Mice received vaccinations intranasally with CpG-adjuvanted antigen 85B (Ag85B/CpG) and/or Bacillus Calmette–Guerin (BCG). Protection against aerosol challenge with a recombinant GFP-expressing BCG was assessed. Mucosal prime/boost vaccinations with Ag85B/CpG and BCG were protective, but did not prevent lung infection indicating more efficacious mucosal vaccines are needed. Our novel finding that protection correlated with increased airway dendritic cells early post-challenge could help guide the development of enhanced mucosal vaccines.  相似文献   

12.
Limited experimental evidences are available on the use of peptides as vaccines to boost BCG induced immunity for protection against tuberculosis. The present study therefore evaluated protective efficacy of booster dose of N-terminal peptides of Ag85B, using prime boost approaches in murine model of tuberculosis. Using earlier established subcutaneous murine model of TB in our laboratory, we compared the protective vaccination efficacy of peptides of Ag85B with that of booster dose of whole Ag85B and BCG by evaluating both antibody and cell-mediated immune response. Groups of mice primed by BCG and boosted with Ag85B peptides showed limited pulmonary bacillary burden and reduced lung pathology after challenge with virulent dose of Mycobacterium tuberculosis in mice. Significant levels (p < 0.001) of BCG specific antibodies (anti-BCG, anti-PPD) and T cell-specific cytokines were observed in Ag85B peptides boosted mice compared to Ag85B and BCG. Ag85B and BCG boosted mice however showed significant protection compared to single BCG dose and unvaccinated control groups. Our result suggests that prime boost strategy using N-terminal peptides of Ag85B may improve immunogenicity of BCG against TB. Such peptides may be attractive candidates for boosting waning BCG induced immune response in near future. However study demands further work including improvisation in experimental designs to justify the results.  相似文献   

13.

Background

It has been proposed that the immune system could be primed as early as during the fetal life and this might have an impact on postnatal vaccination. Therefore, we addressed in murine models whether gestational treatment with mycobacterial antigens could induce better immune responses in the postnatal life.

Methods/Findings

BALB/c mice were treated subcutaneously (s.c.) at the second week of gestation with antigen (Ag)85A or heparin-binding hemagglutinin (HBHA) in the absence of adjuvant. Following birth, offspring mice were immunized intranasally (i.n.) with the same antigens formulated with the adjuvant cholera toxin (CT) at week 1 and week 4. One week after the last immunization, we assessed antigen-specific recall interferon gamma (IFN-γ) responses by in vitro restimulation of lung-derived lymphocytes. Protection against infection was assessed by challenge with high dose Mycobacterium bovis Bacille Calmette-Guérin (BCG) given i.n. We found that recall IFN-γ responses were higher in the offspring born to the treated mother compared to the untreated-mother. More importantly, we observed that the offspring born to the treated mother controlled infection better than the offspring born to the untreated mother. Since the gestational treatment was done in absence of adjuvant, essentially there was no antibody production observed in the pregnant mice and therefore no influence of maternal antibodies was expected. We hypothesized that the effect of maternal treatment with antigen on the offspring occurred due to antigen transportation through placenta. To trace the antigens, we conjugated fluorescent nanocrystals with Ag85A (Qdot-ITK-Ag85A). After inoculation in the pregnant mice, Qdot-ITK-Ag85A conjugates were detected in the liver, spleen of pregnant females and in all the fetuses and placentas examined.

Conclusion

The fetal immune system could be primed in utero by mycobacterial antigens transported through the placenta.  相似文献   

14.
Ag85A and ESAT-6 proteins of Mycobacterium tuberculosis (M.TB) are important protective antigens. The 32-kDa Ag85A is a strong immunogen in both small and large animals. However, the 6-kDa ESAT-6 has relatively low inherent immunogenicity, especially in large animals. To improve the immunogenicity of ESAT-6 in animals, we made chimeric DNA vaccines, HG856K and HG856A, by inserting the esat-6 gene into the Kpn I or Acc I endonuclease restriction site of the ag85a gene, respectively. BALB/c mice were injected intramuscularly three times with the 10-microg singular DNA vaccine (HG85 encoding for Ag85A or HG6 encoding for ESAT-6) or chimeric DNA vaccine (HG856K or HG856A) followed by electroporation (EP). Ten days after the last DNA vaccination, mice received a booster immunization intraperitoneally with 50-microg pure recombinant protein Ag85A or ESAT-6 without adjuvant. Additional groups of mice immunized with chimeric DNA vaccines were boosted with two mixed proteins (Ag85A/ESAT-6) at the same time. The results showed that the immunogenicity of M.TB ESAT-6 antigen was not improved by priming with the HG6 DNA vaccine. However, the humoral immunity against the ESAT-6 antigen was significantly increased in the mice primed with chimeric DNA vaccines, HG856K or HG856A, followed by boosting with ESAT-6 or ESAT-6/Ag85A mixed proteins.  相似文献   

15.

Background

With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with “classical” adjuvants do not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal murine immunization model.

Methods/Findings

The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the novel IC31® adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1) CD4+ T cell responses, (2) vaccine targeting/activation of dendritic cells (DC) and (3) protection in a surrogate mycobacterial challenge model. Conversely to Alum, IC31® induced in both age groups strong Th1 and Th17 responses, characterized by multifunctional T cells expressing IL-2 and TNF-α with or without IFN-γ. In the draining lymph nodes, a similarly small number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40, CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant.

Conclusion

Neonatal immunization with the IC31®- adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC activation.  相似文献   

16.
Diagnosis of active mycobacterial disease in orangutans (Pongo pygmaeus) has been impeded by high levels of non-specific intradermal skin test reactivity to mycobacterial antigens. This may be due in part to cross reactivity between antigens, tuberculin concentrations used or other species-specific factors. Antigen 85 (Ag85) complex proteins are major secretory products of actively growing mycobacteria, and measurement of serum Ag85 could provide a method for determining active mycobacterial infections that was not dependent on host immunity. Serum Ag85 was measured by dot-immunobinding assay using monoclonal anti-Ag85, purified Ag85 standard and enhanced chemiluminescence technology in coded serum samples from 14 captive orangutans from a zoo in Colorado, 15 semi-captive orangutans in Malaysia, and 19 free-ranging wild orangutans in Malaysia. Orangutans from Colorado (USA) were culture negative for Mycobacterium tuberculosis and M. avium, although all had laboratory suspicion or evidence of mycobacterial infection; median serum Ag85 was 10 microU/ml (range, <0.25-630 microU/ml). Of the semi-captive orangutans, six were skin test reactive and two were culture positive for M. avium on necropsy. Median serum Ag85 for this group was 1,880 microU/ml (0.75-7,000 microU/ml), significantly higher than that of Colorado zoo or free-ranging Malaysian orangutans. Median serum Ag85 in the latter group was 125 microU/ml (range, 0.75-2,500 microU/ml). These data suggest that suggest that additional studies using more specific reagents and more samples from animals of known status are appropriate.  相似文献   

17.
目的:探讨结核分枝杆菌分泌蛋白Hsp16.3、Ag85B以及融合蛋白ESAT6-CFP10、Ag85B-Hsp16.3和Ag85B-ESAT6用于TB病人血清学检测的意义。方法:将已构建的含5种目的基因的表达载体(pProEXHTb-Hsp16.3、pProEXHTa-Ag85B、pProEXHTb-ESAT6-CFP10、pProEXHTa-Ag85B-Hsp16.3、pProEXHTa-Ag85B-ESAT6),分别转入宿主菌E.coli DH5α中,诱导表达后分别获得Hsp16.3、Ag85B、ESAT6-CFP10、Ag85B-Hsp16.3和Ag85B-ESAT6五种蛋白,采用Ni2+亲和层析柱进行纯化,并用透析方法进行目的蛋白的复性。将经过复性的5种蛋白分别作为抗原,采用间接ELISA方法检测待测的血清样本,经OPD显色,测定各孔OD490值并判定结果。结果:五种蛋白被成功纯化并复性,通过ELISA方法共检测了22例TB病人血清、10例非结核病人血清和6例正常对照血清,Hsp16.3、Ag85B、ESAT6-CFP10、Ag85B-Hsp16.3和Ag85B-ESAT6这5种抗原的灵敏度分别为36.4%、90.9%、77.3%、95.5%、100%,特异性分别为100%、75%、100%、93.8%、93.8%。统计分析显示,ESAT6-CFP10和Ag85B、Ag85B-Hsp16.3、Ag85B-ESAT6这三种蛋白ELISA检测的结果无差异,而与Hsp16.3和痰涂片检测结果有显著差异。结论:Ag85B-Hsp16.3和Ag85B-ESAT6可作为结核分枝杆菌ELISA检测的初选抗原。  相似文献   

18.
The enzymes of the antigen 85 complex (Ag85A, B, and C) possess mycolyltransferase activity and catalyze the synthesis of the most abundant glycolipid of the mycobacterial cell wall, the cord factor. The cord factor (trehalose 6,6′-dimycolate, TDM) is essential for the integrity of the mycobacterial cell wall and pathogenesis of the bacillus. Thus, TDM biosynthesis is regarded as a potential drug target for control of Mycobacterium tuberculosis infections. Trehalose 6,6′-dimycolate (TDM) is synthesized from two molecules of trehalose-6′-monomycolate (TMM) by antigen 85A. We report here a novel enzyme assay using the natural substrate TMM. The novel colorimetric assay is based on the quantification of glucose from the degradation of trehalose, which is the product from catalytic activity of antigen 85A. Using the new assay, Km and Kcat were determined with values of 129.6 ± 8.1 µM and 65.4 ± 4.1 min 1, respectively. This novel assay is also suitable for robust high-throughput screening (HTS) for compound library screening against mycolyltransferase (antigen 85A). The assay is significantly faster and more convenient to use than all assays currently in use. The assay has a very low coefficient of variance (0.04) in 96-well plates and shows a Z′ factor of 0.67–0.73, indicating the robustness of the assay. In addition, this new assay is highly suitable for the quantification of total TMM of the mycobacterial cell envelope.  相似文献   

19.
CD4+ T cells producing interferon-γ are crucial for protection against Mycobacterium tuberculosis infection and are the cornerstone of tuberculosis vaccination and immunological diagnostic assays. Since emerging evidence indicates that B cells can modulate T cell responses to M. tuberculosis infection, we investigated the contribution of B cells in regulating interferon-γ recall response by memory Thelper1 cells specific for Ag85B, a leading candidate for tuberculosis sub-unit vaccines. We found that B cells were able to maximize the reactivation of CD4+ memory T cells and the interferon-γ response against ex vivo antigen recall in spleens of mice vaccinated with Ag85B. B cell-mediated increase of interferon-γ response was particular evident for high interferon-γ producer CD4+ memory T cells, likely because those T cells were required for triggering and amplification of B cell activation. A positive-feedback loop of mutual activation between B cells, not necessarily antigen-experienced but with integral phosphatidylinositol-3 kinase (PI3K) pathway and a peculiar interferon-γ-producing CD4highT cell subset was established. Programed death-ligand 2 (PD-L2), expressed both on B and the highly activated CD4high T cells, contributed to the increase of interferon-γ recall response through a PD1-independent pathway. In B cell-deficient mice, interferon-γ production and activation of Ag85B-specific CD4+ T cells were blunted against ex vivo antigen recall but these responses could be restored by adding B cells. On the other hand, B cells appeared to down-regulate interleukin-22 recall response. Our data point out that nature of antigen presenting cells determines quality and size of T cell cytokine recall responses. Thus, antigen presenting cells, including B cells, deserve to be considered for a better prediction of cytokine responses by peripheral memory T cells specific for M. tuberculosis antigens. We also invite to consider B cells, PD-L2 and PI3K as potential targets for therapeutic modulation of T cell cytokine responses for tuberculosis control.  相似文献   

20.
Specific mycobacterial antigens are an important prerequisite in the serodiagnosis of tuberculosis. Many studies have reported the use of both native and recombinant proteins. Even though recombinant proteins can form standardized reagents with unlimited supply, their diagnostic test characteristics were not satisfactory in some cases. In this study we have purified the 38-, 30- (antigen 85B), and 16-kDa native antigens of Mycobacterium tuberculosis by procedures with limited number of steps. Starting with the secreted antigens of M. tuberculosis H37Rv, the 38-kDa form was purified by preparative isoelectric focusing, followed by preparative electrophoresis. Separation of antigen 85 components was achieved by anion-exchange chromatography, followed by hydrophobic interaction chromatography. Gel-permeation chromatography was employed for the isolation of the 16-kDa form, from the cytosol fraction of M. tuberculosis H37Rv. By using a minimal number of steps, considerable yields of these proteins were obtained without loss of immunological activity. The native proteins purified were characterized by analytical two-dimensional electrophoresis, HPLC, and circular dichroism studies. Conformation of the native 38-kDa form purified in our laboratory was different from that of the recombinant 38-kDa form from the WHO Bank. The identities of these native antigens were established by immunoblotting with known monoclonal antibodies from the WHO Bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号