首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Beristain AG  Zhu H  Leung PC 《PloS one》2011,6(4):e18473
Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop an invasive phenotype. As altered expression levels of ADAMTS (ADisintegrin And Metalloproteinase with ThromboSpondin repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by extravillous cytotrophoblasts. Transforming growth factor-β1 and interleukin-1β, two cytokines that promote and restrain cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion and invasion through a mechanism involving the αvβ3 integrin heterodimer. This study identifies a novel biological role for ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function.  相似文献   

4.
Preeclampsia (PE) is a serious pregnancy complication that manifests as hypertension and proteinuria after the 20th gestation week. Previously, fetal hemoglobin (HbF) has been identified as a plausible causative factor. Cell-free Hb and its degradation products are known to cause oxidative stress and tissue damage, typical of the PE placenta. A1M (α1-microglobulin) is an endogenous scavenger of radicals and heme. Here, the usefulness of A1M as a treatment for PE is investigated in the pregnant ewe PE model, in which starvation induces PE symptoms via hemolysis. Eleven ewes, in late pregnancy, were starved for 36 hours and then treated with A1M (n = 5) or placebo (n = 6) injections. After injections, the ewes were re-fed and observed for additional 72 hours. They were monitored for blood pressure, proteinuria, blood cell distribution and clinical and inflammation markers in plasma. Before termination, the utero-placental circulation was analyzed with Doppler velocimetry and the kidney glomerular function was analyzed by Ficoll sieving. At termination, blood, kidney and placenta samples were collected and analyzed for changes in gene expression and tissue structure. The starvation resulted in increased amounts of the hemolysis marker bilirubin in the blood, structural damages to the placenta and kidneys and an increased glomerular sieving coefficient indicating a defect filtration barrier. Treatment with A1M ameliorated these changes without signs of side-effects. In conclusion, A1M displayed positive therapeutic effects in the ewe starvation PE model, and was well tolerated. Therefore, we suggest A1M as a plausible treatment for PE in humans.  相似文献   

5.
6.
The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis.In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.The two defining characteristics of human embryonic stem cells (hESCs),1 self-renewal and pluripotency, are maintained by a delicate balance of intracellular and extracellular signaling processes. Extracellular regulation is primarily the result of changes in the microenvironment surrounding the cells during growth in vitro or in vivo. HESCs interact with this “niche ” through support cells, extracellular matrix (ECM) components, and autocrine/paracrine signaling (reviewed in Refs. 13). Modulation of any of these supportive elements individually or in combination has been used extensively to alter hESC behavior (13).The culture of hESCs, as well as that of human induced pluripotent stem cells (hiPSCs), is conventionally performed on a layer of irradiated mouse embryonic fibroblast cells (MEFs). These MEFs are believed to promote the maintenance of hESCs and hiPSCs through the secretion of beneficial support proteins and cytokines into the soluble microenvironment. A number of proteomic studies have been conducted that examine the secretome of feeder-cell layers in an attempt to elucidate proteins and pathways essential for hESC and hiPSC survival (47). Alternatively, hESCs and hiPSCs can be cultured in feeder-free conditions in the absence of support cells. In feeder-free conditions, hESCs and hiPSCs are most often grown on the basement membrane matrix Matrigel™ in medium that has been previously conditioned by MEFs (MEF-CM). Matrigel™ is a gelatinous mixture that is secreted by Engelbreth-Holm-Swarm mouse sarcoma cells (8). Although recent studies have proposed that a variety of defined matrices can support the growth of hESCs and hiPSCs, few of these can maintain a wide range of stem cell lines and therefore are typically not used in place of Matrigel™. The properties of Matrigel™ that make it such an effective matrix for hESC and hiPSC culture remain poorly understood. Because of the complexity of matrices like Matrigel™, the majority of proteomic studies that examine the hESC and hiPSC microenvironment have focused on contributions from support cells and soluble extracellular factors.The ECM is typically a complex network of structural proteins and glycosaminoglycans that function to support cells through the regulation of processes such as adhesion and growth factor signaling (9). Thus, it is not surprising that the generation of a well-defined matrix capable of facilitating hESC and hiPSC self-renewal has remained difficult (10). Previous proteomic investigations of Matrigel™ and other matrices supportive of hESC maintenance in vitro have revealed the presence of numerous growth, binding, and signaling proteins (11, 12). Further examination of how hESCs and hiPSCs interact with these complex matrices would provide critical information about what role the ECM plays in the organization of processes involved in the regulation of self-renewal and pluripotency.A recent study has established the ability of hESC-derived matrix microenvironments to alter tumorigenic properties through the reprogramming of metastatic melanoma cells (13). Importantly, this effect was found to be dependent on the exposure of metastatic cells to hESC-derived conditioned Matrigel™. Culture of metastatic melanoma cells in hESC-conditioned medium did not promote the reprogramming effect. These data suggest that the proteins responsible for this effect were integrated in the matrix. With the use of immunochemical techniques, it was later found that the left-right determination (Lefty) proteins A and B that were deposited in the matrix by hESCs during conditioning were at least in part responsible for the cellular change observed in metastatic cells (14). The Lefty A and B proteins are antagonists of transforming growth factor (TGF)-β signaling that act directly on Nodal protein, a critical regulator of the stem cell phenotype (15, 16). Subsequent studies of conditioned matrix utilizing mESCs implicated the bone morphogenic protein (BMP) 4 antagonist Gremlin as a primary regulator of the observed changes in metastatic cells (17). Collectively, these studies were all biased by a targeted analysis of potential effectors of metastatic cells. A comprehensive proteomic analysis of conditioned matrix could potentially reveal other factors involved in metastatic cell reprogramming. Furthermore, proteomic examination of hESC and hiPSC conditioned matrix could expose factors important in the regulation of self-renewal and pluripotency by the microenvironment in vitro.To this end, we have analyzed both types of human pluripotent stem cells, hESCs and hiPSCs, via a mass spectrometry (MS)-based proteomics approach to identify proteins deposited during growth in feeder-free conditions in vitro on Matrigel™. To investigate the hESC- and hiPSC-derived matrix, the metabolic labeling technique known as stable isotope labeling with amino acids in cell culture (SILAC) was used (18). SILAC facilitates the identification of hESC- and hiPSC-derived proteins that would otherwise be confounded by the presence of mouse-derived protein background from Matrigel™. From the proteomic analysis of three cells lines, namely, the hESC lines H9 and CA1 and the hiPSC line BJ-1D, we identified a total of 621, 1355, and 1350 total unique proteins, respectively. This work represents the first analysis of a hESC- and hiPSC-derived conditioned matrix and resulted in the identification of at least one novel microenvironmental contributor responsible for the regulation of human pluripotent stem cells.  相似文献   

7.
Obesity has become a global epidemic, contributing to the increasing burdens of cardiovascular disease and type 2 diabetes. However, the precise molecular mechanisms of obesity remain poorly elucidated. The hypothalamus plays a major part in regulating energy homeostasis by integrating all kinds of nutritional signals. This study investigated the hypothalamus protein profile in diet-induced obese (DIO) and diet-resistant (DR) rats using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF–MS analysis. Twenty-two proteins were identified in the hypothalamus of DIO or DR rats. These include metabolic enzymes, antioxidant proteins, proteasome related proteins, and signaling proteins, some of which are related to AMP-activated protein kinase (AMPK) signaling or mitochondrial respiration. Among these proteins, in comparison with the normal-diet group, Ubiquitin was significantly decreased in DR rats but not changed in DIO rats, while Ubiquitin carboxyl-terminal esterase L1 (UCHL-1) was decreased in DIO rats but not changed in DR rats. The expression level of Ubiquitin and UCHL-1 were further validated using Western blot analysis. Our study reveals that Ubiquitin and UCHL-1 are obesity-related factors in the hypothalamus that may play an important role in the genesis of DR or DIO by interfering with the integrated signaling network that control energy balance and feeding.  相似文献   

8.
Creutzfeldt–Jakob disease (CJD) is a rare fatal neurodegenerative disease belonging to the group of transmissible spongiform encephalopathies or prion diseases. The agent responsible for the disease is the prion protein in an altered conformational form. Although there have been countless studies performed on the prion protein, the mechanisms that induce the structural change of the normal protein, and the harmful action the altered protein has on nervous cells, are still not fully understood. Furthermore, the final diagnosis for CJD can only occur with a postmortem histopathological analysis of the brain; the antemortem diagnosis is only possible for some specific CJD forms. Finally, there is no current treatment able to stop or delay the progression of the disease. Studies directed at resolving these issues are, therefore, extremely relevant. The proteomic approach is a very good strategy to be applied in such contexts because it allows easy identification of proteins and peptides possibly involved in the disease processes. In this article, the existing data regarding prion infection, biomarkers for CJD diagnosis and the use of several modern proteomic technologies for the identification of new cerebrospinal fluid polypeptides involved in CJD are reviewed.  相似文献   

9.
Z Song  Q Guo  J Zhang  M Li  C Liu  W Zou 《PloS one》2012,7(7):e42068

Background

Morphine tolerance is a common drawback of chronic morphine exposure, hindering use of this drug. Studies have shown that PKCã may play a key role in the development of morphine tolerance, although the mechanisms are not fully known.

Methodology/Principal Findings

In a rat model of morphine tolerance, PKCã knockdown in the spinal cord was successfully carried out using RNA interference (RNAi) with lentiviral vector-mediated short hairpin RNA of PKCã (LV-shPKCã). Spinal cords (L4-L5) were obtained surgically from morphine-tolerant (MT) rats with and without PKCã knockdown, for comparative proteomic analysis. Total proteins from the spinal cords (L4-L5) were extracted and separated using two-dimensional gel electrophoresis (2DGE); 2D gel images were analyzed with PDQuest software. Seven differential gel-spots were observed with increased spot volume, and 18 spots observed with decreased spot volume. Among these, 13 differentially expressed proteins (DEPs) were identified with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), comparing between MT rats with and without PKCã knockdown. The DEPs identified have roles in the cytoskeleton, as neurotrophic factors, in oxidative stress, in ion metabolism, in cell signaling, and as chaperones. Three DEPs (GFAP, FSCN and GDNF) were validated with Western blot analysis, confirming the DEP data. Furthermore, using immunohistochemical analysis, we reveal for the first time that FSCN is involved in the development of morphine tolerance.

Conclusions/Significance

These data cast light on the proteins associated with the PKCã activity during morphine tolerance, and hence may contribute to clarification of the mechanisms by which PKCã influences MT.  相似文献   

10.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
Highlights
  • •Temporal proteome profiling of lipotoxicity and glucolipotoxicity in β-cells
  • •Palmitate induced cholesterol metabolism earlier than fatty acid metabolism
  • •Setd8 promotes palmitate + glucose-stimulated INS-1 cell proliferation
  • •PA induced apoptosis partially via upregulation of Rhob in INS-1 cells
  相似文献   

11.
Shen–Zhi–Ling (SZL) is a Chinese medicine formulated from a Kai–Xin–San decoction that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. However, the underlying mechanisms remain unclear. We investigated biological changes in depression patients (DPs) exhibiting antidepressant responses to SZL treatment using proteomic techniques. We performed label-free quantitative proteomic analysis and liquid chromatography–tandem mass spectrometry to discover and examine altered proteins involved in depression and antidepressant treatment. Serum samples were collected from DPs, DPs who underwent 8 weeks of SZL treatment and healthy controls (HCs). The proteins that differed among the three groups were further validated by Western blot analysis. By performing multivariate analyses, we identified 12 potential serum biomarkers that were differentially expressed among the HC, DP, and SZL groups. We then confirmed the significant changes in alpha-1-antitrypsin, von Willebrand factors, apolipoprotein C-III, and alpha-2-macroglobulin among the three groups by performing Western blot analysis, which supported the proteomic results. Profiling the proteomic changes in DPs treated with SZL could improve our understanding of the pathways involved in SZL responses, such as alterations in platelet activation, inflammatory regulation, and lipid metabolism. Future studies involving larger patient cohorts are necessary to draw more definitive conclusions.  相似文献   

12.
13.
DNA–protein cross-links are generated by both endogenous and exogenous DNA damaging agents, as intermediates during normal DNA metabolism, and during abortive base excision repair. Cross-links are relatively common lesions that are lethal when they block progression of DNA polymerases. DNA–protein cross-links may be broadly categorized into four groups by the DNA and protein chemistries near the cross-link and by the source of the cross-link: DNA–protein cross-links may be found (1) in nicked DNA at the 3' end of one strand (topo I), (2) in nicked DNA at the 5' end of one strand (pol beta), (3) at the 5' ends of both strands adjacent to nicks in close proximity (topo II; Spo 11), and (4) in one strand of duplex DNA (UV irradiation; bifunctional carcinogens and chemotherapeutic agents). Repair mechanisms are reasonably well-defined for groups 1 and 3, and suggested for groups 2 and 4. Our work is focused on the recognition and removal of DNA–protein cross-links in duplex DNA (group 4).  相似文献   

14.

Background

The problem of prostate cancer progression to androgen independence has been extensively studied. Several studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent progression of prostate cancer.

Methodology/Principal Findings

We have performed concurrent measurements of gene expression and protein levels following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed using our novel concept of “topological significance”. This method combines high-throughput molecular data with the global network of protein interactions to identify nodes which occupy significant network positions with respect to differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen stimulus. Our results further indicate that growth factor signaling probably represents a “second phase” response, not directly dependent on the initial androgen stimulus.

Conclusions/Significance

We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an interconnected network module containing many alternative routes from inputs to outputs. If the whole network is involved, a precisely formulated combination therapy may be required to fight the tumor growth effectively.  相似文献   

15.

Objective

To investigate the association between cigarette use during pregnancy and pregnancy-induced hypertension/preeclampsia/eclampsia (PIH) by maternal race/ethnicity and age.

Methods

This retrospective cohort study was based on the U.S. 2010 natality data. Our study sample included U.S. women who delivered singleton pregnancies between 20 and 44 weeks of gestation without major fetal anomalies in 2010 (n = 3,113,164). Multivariate logistic regression models were fit to estimate crude and adjusted odds ratios and the corresponding 95% confidence intervals.

Results

We observed that the association between maternal smoking and PIH varied by maternal race/ethnicity and age. Compared with non-smokers, reduced odds of PIH among pregnant smokers was only evident for non-Hispanic white and non-Hispanic American Indian women aged less than 35 years. Non-Hispanic Asian/Pacific Islander women who smoked during pregnancy had increased odds of PIH regardless of maternal age. Non-Hispanic white and non-Hispanic black women 35 years or older who smoked during pregnancy also had increased odds of PIH.

Conclusion

Our study findings suggest important differences by maternal race/ethnicity and age in the association between cigarette use during pregnancy and PIH. More research is needed to establish the biologic and social mechanisms that might explain the variations with maternal age and race/ethnicity that were observed in our study.  相似文献   

16.
Preeclampsia remains a leading cause of maternal and perinatal mortality and morbidity worldwide; however, its specific etiology still remains obscure. Some studies implicate poor maternal selenium status predisposing the mother to preeclampsia. This study was designed to determine changes in plasma selenium levels in women having preeclampsia as compared with those with normal pregnancy. In a nested case–control study, 650 normal primigravida in their first 24–28 weeks participated in the study. After 3 months of follow-up of all subjects, blood selenium levels were measured in 38 women presenting consecutively with preeclampsia and in 38 women having a normal pregnancy by atomic absorption spectrophotometry. Birth outcomes were recorded, such as gestational age at delivery, height, weight, birth head circumflex and 1-min Apgar score. Preeclampsia affects about 5.84 % of pregnancies, and in our study, there were no significant differences in age, anthropometric indices, and family history of preeclampsia between the preeclamptic and control groups. The selenium concentrations in plasma in women with preeclampsia were significantly lower as compared with those in women with normal pregnancy (70.63?±?21.41 versus 82.03?±?15.54 μg/L, p?<?0.05). Being in the bottom tertile of selenium concentration (less than 62.2 μg/L) was associated with greater risk of preeclampsia in pregnant women. The reduced selenium in the maternal circulations observed in the preeclamptic mothers support the hypothesis that insufficient selenium concentration may be a contributing factor to the pathophysiological mechanisms associated with preeclampsia, and optimizing the dietary selenium intake through supplementation could produce demonstrable clinical benefits.  相似文献   

17.
18.
In this experimental study, differential labeling with isobaric tags for relative and absolute quantitation (iTRAQ) reagents followed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) proteomic approach was used to investigate differences in the proteome of rat spinal cord at 24 h following a moderate contusion injury. Spinal cord protein samples from the injury epicenter (or from sham controls) were trypsinized and differentially labeled with iTRAQ isotopic reagents. The differentially labeled samples were then combined into one sample mixture, separated by LC, and analyzed using MS/MS. Proteins were quantified by comparing the peak areas of iTRAQ reporter fragment ions in MS/MS spectra. The outcome of this analysis revealed that proteins involved in ubiquitination, endocytosis and exocytosis, energy metabolism, inflammatory response, oxidative stress, cytoskeletal disruption, and vascular damage were significantly altered at 24 h following spinal cord injury (SCI). This study demonstrates the utility of the iTRAQ method in proteomic studies and provides further insights into secondary events that occur during acute times following SCI.  相似文献   

19.
20.

Background

Henoch—Schoenlein purpura is the one of most common types of systemic vasculitis that involves impaired renal function and Henoch-Schoenlein purpura nephritis (HSPN). The diagnosis of this condition is largely based on immunohistologic detection of immunoglobulin A1-containing immune complex in the glomerular deposits of mesangium. Despite clinical advances, the etiopathogenesis of HSPN is still largely unknown.

Methods

In this study, we enrolled 25 newly diagnosed HSPN patients and 14 healthy controls. Then, fractions of B cell subtypes were determined in venous blood using flow cytometry. The serum interleukin (IL)-10 concentration was determined by enzyme-linked immunosorbent assay.

Results

Compared to those in healthy controls, the numbers of CD38+CD19+, CD86+CD19+, CD38+CD86+CD19+, and CD95+CD19+ B cells per microliter of blood were significantly higher in HSPN patients. In contrast, the numbers of CD5+CD19+, IL-10+CD19+, CD5+CD1d+CD19+, and IL-10+CD5+CD1d+CD19+ B cells per microliter of blood and the serum IL-10 concentration were significantly lower in HSPN patients. Following treatment, the numbers of CD38+CD19+ and CD86+CD19+ B cells per microliter of blood were significantly reduced in HSPN patients. However, the numbers of CD5+CD1d+CD19+, CD5+CD1d+IL-10+CD19+, and IL-10+CD19+ B cells per microliter of blood and the serum IL-10 concentration were significantly increased in HSPN patients following treatment. The estimated glomerular filtration rate (eGFR) was negatively correlated with the number of CD38+CD19+ B cells but positively correlated with the numbers of IL-10+CD19+, CD1d+CD5+CD19+, and IL-10+CD1d+CD5+CD19+B cells per microliter of blood and the serum IL-10 concentration. The 24-h urinary protein concentration was positively correlated with the number of CD38+CD19+B cells but negatively correlated with the numbers of IL-10+CD19+, CD1d+CD5+CD19+, and IL-10+CD1d+CD5+CD19+B cells per microliter of blood and the serum IL-10 concentration.

Conclusion

Our results suggest that CD38+CD19+ and CD1d+CD5+CD19+ B cells (Bregs) contribute to the pathogenesis of HSPN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号