首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gating charge and voltage dependence of the open state to the inactivated state (O-->I) transition was measured for the voltage- dependent mammalian cardiac Na channel. Using the site 3 toxin, Anthopleurin-A (Ap-A), which selectively modifies the O-->I transition (see Hanck, D. A., and M. F. Sheets. 1995. Journal of General Physiology. 106:601-616), we studied Na channel gating currents (Ig) in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Comparison of Ig recorded in response to step depolarizations before and after modification by Ap-A toxin showed that toxin-modified gating currents decayed faster and had decreased initial amplitudes. The predominate change in the charge-voltage (Q-V) relationship was a reduction in gating charge at positive potentials such that Qmax was reduced by 33%, and the difference between charge measured in Ap-A toxin and in control represented the gating charge associated with Na channels undergoing inactivation by O-->I. By comparing the time course of channel activation (represented by the gating charge measured in Ap-A toxin) and gating charge associated with the O-->I transition (difference between control and Ap-A charge), the influence of activation on the time course of inactivation could be accounted for and the inherent voltage dependence of the O-->I transition determined. The O-->I transition for cardiac Na channels had a valence of 0.75 e-. The total charge of the cardiac voltage-gated Na channel was estimated to be 5 e-. Because charge is concentrated near the opening transition for this isoform of the channel, the time constant of the O-->I transition at 0 mV could also be estimated (0.53 ms, approximately 12 degrees C). Prediction of the mean channel open time-voltage relationship based upon the magnitude and valence of the O- ->C and O-->I rate constants from INa and Ig data matched data previously reported from single Na channel studies in heart at the same temperature.  相似文献   

2.
Slow inactivation in human cardiac sodium channels.   总被引:11,自引:0,他引:11       下载免费PDF全文
The available pool of sodium channels, and thus cell excitability, is regulated by both fast and slow inactivation. In cardiac tissue, the requirement for sustained firing of long-duration action potentials suggests that slow inactivation in cardiac sodium channels may differ from slow inactivation in skeletal muscle sodium channels. To test this hypothesis, we used the macropatch technique to characterize slow inactivation in human cardiac sodium channels heterologously expressed in Xenopus oocytes. Slow inactivation was isolated from fast inactivation kinetically (by selectively recovering channels from fast inactivation before measurement of slow inactivation) and structurally (by modification of fast inactivation by mutation of IFM1488QQQ). Time constants of slow inactivation in cardiac sodium channels were larger than previously reported for skeletal muscle sodium channels. In addition, steady-state slow inactivation was only 40% complete in cardiac sodium channels, compared to 80% in skeletal muscle channels. These results suggest that cardiac sodium channel slow inactivation is adapted for the sustained depolarizations found in normally functioning cardiac tissue. Complete slow inactivation in the fast inactivation modified IFM1488QQQ cardiac channel mutant suggests that this impairment of slow inactivation may result from an interaction between fast and slow inactivation.  相似文献   

3.
(1) Na+ currents and Na+ current fluctuations were measured in single myelinated nerve fibres of Rana esculenta under voltage-clamp conditions. The process of Na+ inactivation was modified by external treatment with 7 microM Anemonia Toxin II or by internal application of 20 or 40 mM IO3(-). (2) At depolarization of 24 and 32 mV the spectral density of Na+ current fluctuations could be described as the sum of two contributions, Sh(f) and Sm(f), representing the spectrum from fluctuations of the inactivation (h) and activation (m) gates, respectively. At higher depolarizations of 40 and 48 mV the low frequency (h) fluctuations could be better fitted by the sum, Sh1(f)+Sh2(f), of two separate Lorentzian functions. (3) The Na+ current and the variance of Na+ current fluctuations between 150 and 450 ms after depolarization are increased by one order of magnitude after application of Anemonia Toxin II or IO3(-). (4) The kinetics of Na+ current inactivation were described as A1 x exp(-t/tau h1) + A2 x exp(-t/tau h2) + B. The constant, tau h1, of fast Na+ inactivation was the same in normal and modified nerve fibres. The slow inactivation time constant, tau h2, increased with increasing depolarizations in modified fibres but decreased under control conditions. In all cases tau h2 showed a similar voltage dependence as the time constant found by fitting the low frequency fluctuations of Na+ current with one Lorentzian function, Sh(f). (5) It is concluded that Anemonia Toxin II and IO3(-) modify a fraction of Na+ channels in an all-or-none manner. A lower limit of the number of modified Na+ channels is estimated from the Na+ current and the variance Na+ current fluctuations. 7 microM external Anemonia Toxin II modifies more than 17% and 20 or 40 mM internal IO3(-) more than 8% of all Na+ channels. The inactivation gates in modified channels experience an electric field different from that in normal fibres.  相似文献   

4.
1. Single myelinated nerve fibres of the frog, Rana esculenta, were investigated predominantly in voltage clamp experiments. 2. Sodium current (INa) inactivation was measured in the presence of 10 mM TEA to suppress IK. Inactivation was diphasic but complete in toxin-free solution; it was delayed and became incomplete in Anemonia sulcata toxin II (ATX II) leading to persistent INa flow even during long depolarizations. The effects were reversible. Activation was not affected. 3. The persistent INa component increased with increasing toxin concentration and saturated at ca. 15 microM. The lowest concentration yielding unequivocal effects in the voltage clamp was 0.5 microM. 4. The curve relating the steady-state inactivation parameter, h infinity to the conditioning potential V became non-monotonic in ATX II i.e. dh infinity/dV greater than 0 for V greater than 30 mV. 5. Inactivation could be formally described by a three-state model with two conducting (h2 and h2) and one closed state (x) in the sequence h1 in equilibrium x in equilibrium h2. 6. Ca2+ modifies h2(V) more than h1(V) whose reaction to Ca2+ is similar to h(V) in toxin-free solution. The Ca2+ effect is very rapid and reversible.  相似文献   

5.
6.
The effects of the scorpion alpha-toxins Lqh II, Lqh III, and LqhalphaIT on human cardiac sodium channels (hH1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins removed fast inactivation with EC(50) values of <2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhalphaIT). Association and dissociation rates of Lqh III were much slower than those of Lqh II and LqhalphaIT, such that Lqh III would not dissociate from the channel during a cardiac activation potential. The voltage dependence of toxin dissociation from hH1 channels was nearly the same for all toxins tested, but it was different from that found for skeletal muscle sodium channels (muI; Chen et al. 2000). These results indicate that the voltage dependence of toxin binding is a property of the channel protein. Toxin dissociation remained voltage dependent even at high voltages where activation and fast inactivation is saturated, indicating that the voltage dependence originates from other sources. Slow inactivation of hH1 and muI channels was significantly enhanced by Lqh II and Lqh III. The half-maximal voltage of steady-state slow inactivation was shifted to negative values, the voltage dependence was increased, and, in particular for hH1, slow inactivation at high voltages became more complete. This effect exceeded an expected augmentation of slow inactivation owing to the loss of fast inactivation and, therefore, shows that slow sodium channel inactivation may be directly modulated by scorpion alpha-toxins.  相似文献   

7.
Slow inactivation in voltage-gated sodium channels is a biophysical process that governs the availability of sodium channels over extended periods of time. Slow inactivation, therefore, plays an important role in controlling membrane excitability, firing properties, and spike frequency adaptation. Defective slow inactivation is associated with several diseases of cell excitability, such as hyperkalemic periodic paralysis, myotonia, idiopathic ventricular fibrillation and long-QT syndrome. These associations underscore the physiological importance of this phenomenon. Nevertheless, our understanding of the molecular substrates for slow inactivation is still fragmentary. This review covers the current state of knowledge concerning the molecular underpinnings of slow inactivation, and its relationship with other biophysical processes of voltage-gated sodium channels.  相似文献   

8.
The role of sodium channel closed-state fast inactivation in membrane excitability is not well understood. We compared open- and closed-state fast inactivation, and the gating charge immobilized during these transitions, in skeletal muscle channel hNa(V)1.4. A significant fraction of total charge movement and its immobilization occurred in the absence of channel opening. Simulated action potentials in skeletal muscle fibers were attenuated when pre-conditioned by sub-threshold depolarization. Anthopleurin A, a site-3 toxin that inhibits gating charge associated with the movement of DIVS4, was used to assess the role of this voltage sensor in closed-state fast inactivation. Anthopleurin elicited opposing effects on the gating mode, kinetics and charge immobilized during open- versus closed-state fast inactivation. This same toxin produced identical effects on recovery of channel availability and remobilization of gating charge, irrespective of route of entry into fast inactivation. Our findings suggest that depolarization promoting entry into fast inactivation from open versus closed states provides access to the IFMT receptor via different rate-limiting conformational translocations of DIVS4.  相似文献   

9.
Y Y Vilin  N Makita  A L George  Jr    P C Ruben 《Biophysical journal》1999,77(3):1384-1393
Skeletal and heart muscle excitability is based upon the pool of available sodium channels as determined by both fast and slow inactivation. Slow inactivation in hH1 sodium channels significantly differs from slow inactivation in hSkM1. The beta(1)-subunit modulates fast inactivation in human skeletal sodium channels (hSkM1) but has little effect on fast inactivation in human cardiac sodium channels (hH1). The role of the beta(1)-subunit in sodium channel slow inactivation is still unknown. We used the macropatch technique on Xenopus oocytes to study hSkM1 and hH1 slow inactivation with and without beta(1)-subunit coexpression. Our results indicate that the beta(1)-subunit is partly responsible for differences in steady-state slow inactivation between hSkM1 and hH1 channels. We also studied a sodium channel chimera, in which P-loops from each domain in hSkM1 sodium channels were replaced with corresponding regions from hH1. Our results show that these chimeras exhibit hH1-like properties of steady-state slow inactivation. These data suggest that P-loops are structural determinants of sodium channel slow inactivation, and that the beta(1)-subunit modulates slow inactivation in hSkM1 but not hH1. Changes in slow inactivation time constants in sodium channels coexpressed with the beta(1)-subunit indicate possible interactions among the beta(1)-subunit, P-loops, and the slow inactivation gate in sodium channels.  相似文献   

10.
Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.  相似文献   

11.
The time-, frequency-, and voltage-dependent blocking actions of several cationic drug molecules on open Na channels were investigated in voltage-clamped, internally perfused squid giant axons. The relative potencies and time courses of block by the agents (pancuronium [PC], octylguanidinium [C8G], QX-314, and 9-aminoacridine [9-AA]) were compared in different intracellular ionic solutions; specifically, the influences of internal Cs, tetramethylammonium (TMA), and Na ions on block were examined. TMA+ was found to inhibit the steady state block of open Na channels by all of the compounds. The time-dependent, inactivation-like decay of Na currents in pronase-treated axons perfused with either PC, 9-AA, or C8G was retarded by internal TMA+. The apparent dissociation constants (at zero voltage) for interaction between PC and 9-AA with their binding sites were increased when TMA+ was substituted for Cs+ in the internal solution. The steepness of the voltage dependence of 9-AA or PC block found with internal Cs+ solutions was greatly reduced by TMA+, resulting in estimates for the fractional electrical distance of the 9-AA binding site of 0.56 and 0.22 in Cs+ and TMA+, respectively. This change may reflect a shift from predominantly 9-AA block in the presence of Cs+ to predominantly TMA+ block. The depth, but not the rate, of frequency-dependent block by QX-314 and 9-AA is reduced by internal TMA+. In addition, recovery from frequency-dependent block is not altered. Elevation of internal Na produces effects on 9-AA block qualitatively similar to those seen with TMA+. The results are consistent with a scheme in which the open channel blocking drugs, TMA (and Na) ions, and the inactivation gate all compete for a site or for access to a site in the channel from the intracellular surface. In addition, TMA ions decrease the apparent blocking rates of other drugs in a manner analogous to their inhibition of the inactivation process. Multiple occupancy of Na channels and mutual exclusion of drug molecules may play a role in the complex gating behaviors seen under these conditions.  相似文献   

12.
Alpha-scorpion toxins bind in a voltage-dependent way to site 3 of the sodium channels, which is partially formed by the loop connecting S3 and S4 segments of domain IV, slowing down fast inactivation. We have used Ts3, an alpha-scorpion toxin from the Brazilian scorpion Tityus serrulatus, to analyze the effects of this family of toxins on the muscle sodium channels expressed in Xenopus oocytes. In the presence of Ts3 the total gating charge was reduced by 30% compared with control conditions. Ts3 accelerated the gating current kinetics, decreasing the contribution of the slow component to the ON gating current decay, indicating that S4-DIV was specifically inhibited by the toxin. In addition, Ts3 accelerated and decreased the fraction of charge in the slow component of the OFF gating current decay, which reflects an acceleration in the recovery from the fast inactivation. Site-specific fluorescence measurements indicate that Ts3 binding to the voltage-gated sodium channel eliminates one of the components of the fluorescent signal from S4-DIV. We also measured the fluorescent signals produced by the movement of the first three voltage sensors to test whether the bound Ts3 affects the movement of the other voltage sensors. While the fluorescence-voltage (F-V) relationship of domain II was only slightly affected and the F-V of domain III remained unaffected in the presence of Ts3, the toxin significantly shifted the F-V of domain I to more positive potentials, which agrees with previous studies showing a strong coupling between domains I and IV. These results are consistent with the proposed model, in which Ts3 specifically impairs the fraction of the movement of the S4-DIV that allows fast inactivation to occur at normal rates.  相似文献   

13.
Sodium current (INa) inactivation kinetics in neonatal cardiac myocytes were analyzed using whole cell voltage clamp before and after acute treatments with thyroid hormone (3,5,3'-triiodo-L-thyronine, T3). In untreated neonatal myocytes, INa inactivation was predominantly mono-exponential, with 93 +/- 3% (S.D.; n = 9) of the peak amplitude decaying with a time constant, tau h1, of 1.8 +/- 0.5 ms at -30 mV. The remaining 7% of control INa decayed more slowly, with a time constant, tau h2, of 9.3 +/- 3.0 ms at -30 mV. The contribution of slowly-inactivating channels to peak current was increased from 7% to 43 +/- 27% within 5 min of exposure to 5-20 nM T3 (nine cells; P less than 0.005). The time constants for both the fast- and slow-inactivating components of peak current (tau h1 and tau h2) were not significantly changed by acute T3 treatment, nor was steady-state INa inactivation (h infinity) affected. Thyroid hormone action on sodium inactivation was partially reversible by lidocaine. These findings indicate that T3 acts at the neonatal cardiac cell membrane to promote slow inactivation kinetics in sodium channels.  相似文献   

14.
In TTX-sensitive nerve and skeletal muscle Na+ channels, selective modification of external carboxyl groups with trimethyloxonium (TMO) or water-soluble carbodiimide (WSC) prevents voltage-dependent Ca2+ block, reduces unitary conductance, and decreases guanidinium toxin affinity. In the case of TMO, it has been suggested that all three effects result from modification of a single carboxyl group, which causes a positive shift in the channel's surface potential. We studied the effect of these reagents on Ca2+ block of adult rabbit ventricular Na+ channels in cell-attached patches. In unmodified channels, unitary conductance (gamma Na) was 18.6 +/- 0.9 pS with 280 mM Na+ and 2 mM Ca2+ in the pipette and was reduced to 5.2 +/- 0.8 pS by 10 mM Ca2+. In contrast to TTX-sensitive Na+ channels, Ca2+ block of cardiac Na+ channels was not prevented by TMO; after TMO pretreatment, gamma Na was 6.1 +/- 1.0 pS in 10 mM Ca2+. Nevertheless, TMO altered cardiac Na+ channel properties. In 2 mM Ca2+, TMO-treated patches exhibited up to three discrete gamma Na levels: 15.3 +/- 1.7, 11.3 +/- 1.5, and 9.8 +/- 1.8 pS. Patch-to-patch variation in which levels were present and the absence of transitions between levels suggests that at least two sites were modified by TMO. An abbreviation of mean open time (MOT) accompanied each decrease in gamma Na. The effects on channel gating of elevating external Ca2+ differed from those of TMO pretreatment. Increasing pipette Ca2+ from 2 to 10 mM prolonged the MOT at potentials positive to approximately -35 mV by decreasing the open to inactivated (O-->I) transition rate constant. On the other hand, even in 10 mM Ca2+ TMO accelerated the O-->I transition rate constant without a change in its voltage dependence. Ensemble averages after TMO showed a shortening of the time to peak current and an acceleration of the rate of current decay. Channel modification with WSC resulted in analogous effects to those of TMO in failing to show relief from block by 10 mM Ca2+. Further, WSC caused a decrease in gamma Na and an abbreviation of MOT at all potentials tested. We conclude that a change in surface potential caused by a single carboxyl modification is inadequate to explain the effects of TMO and WSC in heart. Failure of TMO and WSC to prevent Ca2+ block of the cardiac Na+ channel is a new distinction among isoforms in the Na+ channel multigene family.  相似文献   

15.
Impaired slow inactivation in mutant sodium channels.   总被引:17,自引:3,他引:14       下载免费PDF全文
Hyperkalemic periodic paralysis (HyperPP) is a disorder in which current through Na+ channels causes a prolonged depolarization of skeletal muscle fibers, resulting in membrane inexcitability and muscle paralysis. Although HyperPP mutations can enhance persistent sodium currents, unaltered slow inactivation would effectively eliminate any sustained currents through the mutant channels. We now report that rat skeletal muscle channels containing the mutation T698M, which corresponds to the human T704M HyperPP mutation, recover very quickly from prolonged depolarizations. Even after holding at -20 mV for 20 min, approximately 25% of the maximal sodium current is available subsequent to a 10-ms hyperpolarization (-100 mV). Under the same conditions, recovery is less than 3% in wild-type channels and in the F1304Q mutant, which has impaired fast inactivation. This effect of the T698M mutation on slow inactivation, in combination with its effects on activation, is expected to result in persistent currents such as that seen in HyperPP muscle.  相似文献   

16.
The interaction of antiarrhythmic drugs with ion channels is often described within the context of the modulated receptor hypothesis, which explains the action of drugs by proposing that the binding site has a variable affinity for drugs, depending upon whether the channel is closed, open, or inactivated. Lack of direct evidence for altered gating of cardiac Na channels allowed for the suggestion of an alternative model for drug interaction with cardiac channels, which postulated a fixed affinity receptor with access limited by the conformation of the channel (guarded receptor hypothesis). We report measurement of the gating currents of Na channels in canine cardiac Purkinje cells in the absence and presence of QX-222, a quaternary derivative of lidocaine, applied intracellularly, and benzocaine, a neutral local anesthetic. These data demonstrate that the cardiac Na channel behaves as a modulated rather than a guarded receptor in that drug-bound channels gate with altered kinetics. In addition, the results suggest a new interpretation of the modulated receptor hypothesis whereby drug occupancy reduces the overall voltage- dependence of gating, preventing full movement of the voltage sensor.  相似文献   

17.
18.
19.
Inactivation is a fundamental property of voltage-gated ion channels. Fast inactivation of Na(+) channels involves channel block by the III-IV cytoplasmic interdomain linker. The mechanisms of nonfast types of inactivation (intermediate, slow, and ultraslow) are unclear, although the ionic environment and P-loops rearrangement appear to be involved. In this study, we employed a TTX-based P-loop domain model of a sodium channel and the MCM method to investigate a possible role of P-loop rearrangement in the nonfast inactivation. Our modeling predicts that Na(+) ions can bind between neighboring domains in the outer-carboxylates ring EEDD, forming an ordered structure with interdomain contacts that stabilize the conducting conformation of the outer pore. In this model, the permeant ions can transit between the EEDD ring and the selectivity filter ring DEKA, retaining contacts with at least two carboxylates. In the absence of Na(+), the electrostatic repulsion between the EEDD carboxylates disrupts the permeable configuration. In this Na(+)-deficient model, the region between the EEDD and DEKA rings is inaccessible for Na(+) but is accessible for TMA. Taken together, these results suggest that Na(+)-saturated models are consistent with experimental characteristics of the open channels, whereas Na(+)-deficient models are consistent with experimentally defined properties of the slow-inactivated channels. Our calculations further predict that binding of LAs to the inner pore would depend on whether Na(+) occupies the DEKA ring. In the absence of Na(+) in the DEKA ring, the cationic group of lidocaine occurs in the focus of the pore helices' macrodipoles and would prevent occupation of the ring by Na(+). Loading the DEKA ring with Na(+) results in the electrostatic repulsion with lidocaine. Thus, there are antagonistic relations between a cationic ligand bound in the inner pore and Na(+) in the DEKA ring.  相似文献   

20.
Lidocaine block of cardiac sodium channels   总被引:20,自引:7,他引:20       下载免费PDF全文
Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 μM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 μM, at a negative holding potential where inactivation was completely removed, to approximately 10 μM, at a depolarized holding potential where inactivation was nearly complete. Lidocaine block showed prominent use dependence with trains of depolarizing pulses from a negative holding potential. During the interval between pulses, repriming of I (Na) displayed two exponential components, a normally recovering component (τless than 0.2 s), and a lidocaine-induced, slowly recovering fraction (τ approximately 1-2 s at pH 7.0). Raising the lidocaine concentration magnified the slowly recovering fraction without changing its time course; after a long depolarization, this fraction was one-half at approximately 10 μM lidocaine, just as expected if it corresponded to drug-bound, inactivated channels. At less than or equal to 20 μM lidocaine, the slowly recovering fraction grew exponentially to a steady level as the preceding depolarization was prolonged; the time course was the same for strong or weak depolarizations, that is, with or without significant activation of I(Na). This argues that use dependence at therapeutic levels reflects block of inactivated channels, rather than block of open channels. Overall, these results provide direct evidence for the “modulated-receptor hypothesis” of Hille (1977) and Hondeghem and Katzung (1977). Unlike tetrodotoxin, lidocaine shows similar interactions with Na channels of heart, nerve, and skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号