首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
Endopolygalacturonases (endoPGs) of some phytopathogens are virulent factors for dicots. To investigate the function of the endoPG of Magnaporthe oryzae, a disruption mutant of MGG_08938, the homolog of endoPG found in the genome database of this fungus, was generated. The pathogenicity, mycelial growth, and appressorium formation of this mutant were comparable with those of the wild-type strain; however, the germination of conidia in a highly concentrated suspension of conidia was affected by the mutation. Whereas the germination of the wild-type strain was inhibited at high concentrations, this effect was canceled out by disruption by the endoPG homolog gene. The authors named the gene MDG1 (M. oryzae density-dependent germination), which delineates this new function in the fungus.  相似文献   

2.
3.
Liu XH  Lu JP  Zhang L  Dong B  Min H  Lin FC 《Eukaryotic cell》2007,6(6):997-1005
We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the DeltaMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the DeltaMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea.  相似文献   

4.
Fungal conidia contain chemicals that inhibit germination and appressorium formation until they are well dispersed in a favorable environment. Recently, such self-inhibitors were found to be present on the conidia of Magnaporthe grisea, and plant surface waxes were found to relieve this self-inhibition. To determine whether the self-inhibitors suppress the expression of early genes involved in the germination and differentiation of conidia, the calmodulin gene was chosen as a representative early gene, because it was found to be expressed early in Colletotrichum gloeosporioides and Colletotrichum trifolii differentiation. After calmodulin cDNA and genomic DNA from M. grisea were cloned, the promoter of the calmodulin gene was fused to a reporter gene, that for green fluorescent protein (GFP), and transformed into the M. grisea genome. Confocal microscopic examination and quantitation of expression of GFP green fluorescence showed (i) that the expression of the calmodulin gene decreased significantly when self-inhibition of M. grisea appressorium formation occurred because of high conidial density or addition of exogenous self-inhibitors and (ii) that the expression level of this gene was restored when self-inhibition was relieved by the addition of plant surface waxes. The increase in fluorescence correlated with the percentage of conidia that formed appressoria. The induction of calmodulin was also confirmed by RNA blotting. Concanavalin A inhibited surface attachment of conidia, GFP expression, and appressorium formation without affecting germination. The high correlation between GFP expression and appressorium formation strongly suggests that calmodulin gene expression and appressorium formation require surface attachment.  相似文献   

5.
6.
Zhang H  Xue C  Kong L  Li G  Xu JR 《Eukaryotic cell》2011,10(8):1062-1070
In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae.  相似文献   

7.
Insertional mutagenesis of Magnaporthe oryzae led to the identification of MCK1, a pathogenicity gene predicted to encode mitogen-activated protein kinase kinase kinase (MAPKKK) homologous to BCK1 in Saccharomyces cerevisiae. Targeted disruption of MCK1 resulted in the fungus undergoing autolysis and showing hypersensitivity to cell-wall-degrading enzyme. The mck1 produced significantly reduced numbers of conidia and developed appressoria in a slightly retarded manner compared with the wild type. Appressorium of the mck1 mutant was unable to penetrate into plant tissues, thereby rendering the mutant nonpathogenic. Cytorrhysis assay and monitoring of lipid mobilization suggested that the appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, the mck1 mutant failed to grow inside plant tissue. Complementation of the mutated gene restored its ability to cause disease symptoms, demonstrating that MCK1 is required for fungal pathogenicity. Taken together, our results suggest that MCK1 is an MAPKKK involved in maintaining cell wall integrity of M. oryzae, and that remodeling of the cell wall in response to host environments is essential for fungal pathogenesis.  相似文献   

8.
9.
Goh J  Jeon J  Kim KS  Park J  Park SY  Lee YH 《PloS one》2011,6(12):e28220
In eukaryotes, microbodies called peroxisomes play important roles in cellular activities during the life cycle. Previous studies indicate that peroxisomal functions are important for plant infection in many phytopathogenic fungi, but detailed relationships between fungal pathogenicity and peroxisomal function still remain unclear. Here we report the importance of peroxisomal protein import through PTS2 (Peroxisomal Targeting Signal 2) in fungal development and pathogenicity of Magnaporthe oryzae. Using an Agrobacterium tumefaciens-mediated transformation library, a pathogenicity-defective mutant was isolated from M. oryzae and identified as a T-DNA insert in the PTS2 receptor gene, MoPEX7. Gene disruption of MoPEX7 abolished peroxisomal localization of a thiolase (MoTHL1) containing PTS2, supporting its role in the peroxisomal protein import machinery. ΔMopex7 showed significantly reduced mycelial growth on media containing short-chain fatty acids as a sole carbon source. ΔMopex7 produced fewer conidiophores and conidia, but conidial germination was normal. Conidia of ΔMopex7 were able to develop appressoria, but failed to cause disease in plant cells, except after wound inoculation. Appressoria formed by ΔMopex7 showed a defect in turgor generation due to a delay in lipid degradation and increased cell wall porosity during maturation. Taken together, our results suggest that the MoPEX7-mediated peroxisomal matrix protein import system is required for fungal development and pathogenicity M. oryzae.  相似文献   

10.
The infection process of Colletotrichum lagenarium, the causal agent of cucumber anthracnose disease, involves several key steps: germination; formation of melanized appressoria; appressorial penetration; and subsequent invasive growth in host plants. Here we report that the C. lagenarium CMK1 gene encoding a mitogen-activated protein (MAP) kinase plays a central role in these infection steps. CMK1 can complement appressorium formation of the Pmk1 MAP kinase mutant of Magnaporthe grisea. Deletion of CMK1 causes reduction of conidiation and complete lack of pathogenicity to the host plant. Surprisingly, in contrast to M. grisea pmk1 mutants, conidia of cmk1 mutants fail to germinate on both host plant and glass surfaces, demonstrating that the CMK1 MAP kinase regulates conidial germination. However, addition of yeast extract rescues germination, indicating the presence of a CMK1-independent pathway for regulation of conidial germination. Germinating conidia of cmk1 mutants fail to form appressoria and the mutants are unable to grow invasively in the host plant. This strongly suggests that MAP kinase signaling pathways have general significance for infection structure formation and pathogenic growth in phytopathogenic fungi. Furthermore, three melanin genes show no or slight expression in the cmk1 mutant when conidia fail to germinate, suggesting that CMK1 plays a role in gene expression required for appressorial melanization.  相似文献   

11.
Magnaporthe oryzae is a devastating blast fungal pathogen of rice (Oryza sativa L.) that causes dramatic decreases in seed yield and quality. During the early stages of infection by this pathogen, the fungal spore senses the rice leaf surface, germinates, and penetrates the cell via an infectious structure known as an appressorium. During this process, M. oryzae secretes several proteins; however, these proteins are largely unknown mainly due to the lack of a suitable method for isolating secreted proteins during germination and appressoria formation. We examined the secretome of M. oryzae by mimicking the early stages of infection in vitro using a glass plate (GP), PVDF membrane, and liquid culture medium (LCM). Microscopic observation of M. oryzae growth revealed appressorium formation on the GP and PVDF membrane resembling natural M. oryzae-rice interactions; however, appresorium formation was not observed in the LCM. Secreted proteins were collected from the GP (3, 8, and 24 h), PVDF membrane (24 h), and LCM (48 h) and identified by two-dimensional gel electrophoresis (2DE) followed by tandem mass spectrometry. The GP, PVDF membrane, and LCM-derived 2D gels showed distinct protein patterns, indicating that they are complementary approaches. Collectively, 53 nonredundant proteins including previously known and novel secreted proteins were identified. Six biological functions were assigned to the proteins, with the predominant functional classes being cell wall modification, reactive oxygen species detoxification, lipid modification, metabolism, and protein modification. The in vitro system using GPs and PVDF membranes applied in this study to survey the M. oryzae secretome, can be used to further our understanding of the early interactions between M. oryzae and rice leaves.  相似文献   

12.
13.
14.
Autophagy is a well-known degradation system, induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. Recently, it was reported that autophagy is involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. In this study, we isolated the ATG8 gene homologue Aoatg8 from the filamentous fungus Aspergillus oryzae and visualized autophagy by the expression of DsRed2-AoAtg8 and enhanced green fluorescent protein-AoAtg8 fusion proteins in this fungus. While the fusion proteins were localized in dot structures which are preautophagosomal structure-like structures under normal growth conditions, starvation or rapamycin treatment caused their accumulation in vacuoles. DsRed2 expressed in the cytoplasm was also taken up into vacuoles under starvation conditions or during the differentiation of conidiophores and conidial germination. Deletion mutants of Aoatg8 did not form aerial hyphae and conidia, and DsRed2 was not localized in vacuoles under starvation conditions, indicating that Aoatg8 is essential for autophagy. Furthermore, Aoatg8 conditional mutants showed delayed conidial germination in the absence of nitrogen sources. These results suggest that autophagy functions in both the differentiation of aerial hyphae and in conidial germination in A. oryzae.  相似文献   

15.
The rice blast fungus expresses a pathogenicity gene, MPG1, during appressorium formation, disease symptom development, and conidiation. The MPG1 gene sequence predicts a small protein belonging to a family of fungal proteins designated hydrophobins. Using random ascospore analysis and genetic complementation, we showed that MPG1 is necessary for infection-related development of Magnaporthe grisea on rice leaves and for full pathogenicity toward susceptible rice cultivars. The protein product of MPG1 appears to interact with hydrophobic surfaces, where it may act as a developmental sensor for appressorium formation. Ultrastructural studies revealed that MPG1 directs formation of a rodlet layer on conidia composed of interwoven ~5-nm rodlets, which contributes to their surface hydrophobicity. Using combined genetic and biochemical approaches, we identified a 15-kD secreted protein with characteristics that establish it as a class I hydrophobin. The protein is able to form detergent-insoluble high molecular mass complexes, is soluble in trifluoroacetic acid, and exhibits mobility shifts after treatment with performic acid. The production of this protein is directed by MPG1.  相似文献   

16.
The cellular outcome of changes in nitrogen availability in the context of development and early stages of pathogenicity was studied by quantitative analysis of two-dimensional gel electrophoresis of Colletotrichum acutatum infecting strawberry. Significant alterations occurred in the abundance of proteins synthesized during appressorium formation under nitrogen-limiting conditions compared with a complete nutrient supply. Proteins that were up- or down-regulated were involved in energy metabolism, nitrogen and amino acid metabolism, protein synthesis and degradation, response to stress and reactive oxygen scavenging. Members belonging to the reactive oxygen species (ROS) scavenger machinery, superoxide dismutase and glutathione peroxidase, were up-regulated at the appressorium formation stage, as well as under nitrogen-limiting conditions relative to growth with a complete nutrient supply, whereas abundance of bifunctional catalase was up-regulated predominantly at the appressorium formation stage. Fungal ROS were detected within germinating conidia during host pre-penetration, penetration and colonization stages, accompanied by plant ROS, which were abundant in the apoplastic space. Application of exogenous antioxidants quenched ROS production and reduced the frequency of appressorium formation. Up-regulation in metabolic activity was detected during appressorium formation and nutrient deficiency compared with growth under complete nutrient supply. Enhanced levels of proteins related to the glyoxylate cycle and lipid metabolism (malate dehydrogenase, formate dehydrogenase and acetyl-CoA acetyltransferase) were observed at the appressorium formation stage, in contrast to down-regulation of isocitrate dehydrogenase. The present study demonstrates that appressoria formation processes, occurring under nutritional deprivation, are accompanied by metabolic shifts, and that ROS production is an early fungal response that may modulate initial stages of pathogen development.  相似文献   

17.
Treatment with cyclic AMP (cAMP) induces appressorium formation in the phytopathogenic fungus Magnaporthe grisea, the causative agent of rice blast disease. In a search for the M. grisea genes responsible for appressorium formation and host invasion, SAGE (Serial Analysis of Gene Expression) was carried out using mRNA isolated from fungal conidia germinating in the presence and absence of cAMP. From cAMP-treated conidia 5087 tags including 2889 unique tags were isolated, whereas untreated conidia yielded 2342 unique tags out of total of 3938. cAMP treatment resulted in up- and down-regulation of genes corresponding to 57 and 53 unique tags, respectively. Upon consultation of EST/cDNA databases, 22 tags with higher representation in cAMP-treated conidia were annotated with putative gene names. Furthermore, 28 tags corresponding to cAMP-induced genes could be annotated with the help of the recently published genome sequence of M. grisea. cAMP-induced genes identified by SAGE included many genes that have not been described so far, as well as a number of genes known to be involved in pathogenicity, e.g. MPG1, MAS1 and MAC1. RT-PCR of 13 randomly selected genes confirmed the SAGE results, verifying the fidelity of the SAGE data.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by E. Cerdá-Olmedo  相似文献   

18.
The protein kinase Snf1 is a major component of the glucose derepression pathway in yeast and a regulator of gene expression for the cell wall degrading enzyme (CWDE) in some plant pathogenic fungi. To address the molecular function of Snf1 in Magnaporthe oryzae, which causes the rice blast disease, MoSNF1 was cloned and functionally characterized using gene knock-out strategies. MoSNF1 functionally complemented the growth defect of the yeast snf1 mutant on a non-fermenting carbon source. However, the growth rate of the Δmosnf1 mutant on various carbon sources was reduced independent of glucose, and the expression of the CWDE genes in the mutant was induced during derepressing condition like the wild type. The pre-penetration stage including conidial germination and appressorium formation of the Δmosnf1 was largely impaired, and the pathogenicity of the Δmosnf1 was significantly reduced. Most strikingly, the Δmosnf1 mutant produced only a few conidia and had a high frequency of abnormally shaped conidia compared to the wild type. Our results suggest that MoSNF1 is a functional homolog of yeast Snf1, but its contribution to sporulation, vegetative growth and pathogenicity is critical in M. oryzae.  相似文献   

19.
20.
Bruno KS  Tenjo F  Li L  Hamer JE  Xu JR 《Eukaryotic cell》2004,3(6):1525-1532
A mitogen-activated protein (MAP) kinase gene, PMK1, is known to regulate appressorium formation and infectious hyphal growth in the rice blast fungus Magnaporthe grisea. In this study, we constructed a green fluorescent protein gene-PMK1 fusion (GFP-PMK1) to examine the expression and localization of PMK1 in M. grisea during infection-related morphogenesis. The GFP-PMK1 fusion encoded a functional protein that complemented the defect of the pmk1 deletion mutant in appressorium formation and plant infection. Although a weak GFP signal was detectable in vegetative hyphae, conidia, and germ tubes, the expression of GFP-Pmk1 was increased in appressoria and developing conidia. Nuclear localization of GFP-Pmk1 proteins was observed in a certain percentage of appressoria. A kinase-inactive allele and a nonphosphorylatable allele of PMK1 were constructed by site-directed mutagenesis. Expression of these mutant PMK1 alleles did not complement the pmk1 deletion mutant. These data confirm that kinase activity and activation of PMK1 by the upstream MAP kinase kinase are required for appressorium formation and plant infection in M. grisea. When overexpressed with the RP27 promoter in the wild-type strain, both the kinase-inactive and nonphosphorylatable PMK1 fusion proteins caused abnormal germ tube branching. Overexpression of these PMK1 mutant alleles may interfere with the function of native PMK1 during appressorium formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号