首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI) and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1) receptor antagonist after MI in rats.

Methodology/Principal Findings

Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823) or AT1 receptor antagonist (irbesartan) alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP); greater first derivative of left ventricular pressure (± dp/dt max), left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2) and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1) mRNA expression were not significantly affected by B1 receptor blockade.

Conclusions/Significance

The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.  相似文献   

3.
Recent clinical trials have demonstrated that combination therapy with renin-angiotensin system inhibitors plus calcium channel blockers (CCBs) elicits beneficial effects on cardiovascular and renal events in hypertensive patients with high cardiovascular risks. In the present study, we hypothesized that CCB enhances the protective effects of an angiotensin II type 1 receptor blocker (ARB) against diabetic cerebrovascular-renal injury. Saline-drinking type 2 diabetic KK-Ay mice developed hypertension and exhibited impaired cognitive function, blood-brain barrier (BBB) disruption, albuminuria, glomerular sclerosis and podocyte injury. These brain and renal injuries were associated with increased gene expression of NADPH oxidase components, NADPH oxidase activity and oxidative stress in brain and kidney tissues as well as systemic oxidative stress. Treatment with the ARB, olmesartan (10 mg/kg/day) reduced blood pressure in saline-drinking KK-Ay mice and attenuated cognitive decline, BBB disruption, glomerular injury and albuminuria, which were associated with a reduction of NADPH oxidase activity and oxidative stress in brain and kidney tissues as well as systemic oxidative stress. Furthermore, a suppressive dose of azelnidipine (3 mg/kg/day) exaggerated these beneficial effects of olmesartan. These data support the hypothesis that a CCB enhances ARB-associated cerebrovascular-renal protective effects through suppression of NADPH oxidase-dependent oxidative stress in type 2 diabetes.  相似文献   

4.
5.
Diabetic nephropathy is the leading cause of end stage renal disease in the world. Although tremendous efforts have been made, scientists have yet to identify an ideal animal model that can reproduce the characteristics of human diabetic nephropathy. In this study, we hypothesize that taurine insufficiency is a critical risk factor for development of diabetic nephropathy associated with diabetes mellitus. This hypothesis was tested in vivo in TauT heterozygous (TauT +/-) and homozygous (TauT-/-) knockout in C57BL/6 background mice. We have shown that alteration of the TauT gene (also known as SLC6A6) has a substantial effect on the susceptibility to development of extensive diabetic kidney disease in both TauT +/- and TauT-/-mouse models of diabetes. These animals developed histological changes characteristic of human diabetic nephropathy that included glomerulosclerosis, nodular lesions, arteriosclerosis, arteriolar dilation, and tubulointerstitial fibrosis. Immunohistochemical staining of molecular markers of smooth muscle actin, CD34, Ki67 and collagen IV further confirmed these observations. Our results demonstrated that both homozygous and heterozygous TauT gene deletion predispose C57BL/6 mice to develop end-stage diabetic kidney disease, which closely replicates the pathological features of diabetic nephropathy in human diabetic patients.  相似文献   

6.
It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols.Nitric oxide (NO)2 is the most studied of the endogenously generated nitrogen oxides and is well known to mediate many aspects of cardiovascular function including the regulation of vascular tone and platelet aggregation (for example, see Ref. 1). These responses are in large part due to the interaction of NO with its most established endogenous receptor, soluble guanylate cyclase (sGC) (2). This 150-kDa heterodimeric heme protein catalyzes the production of the second messenger molecule cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP) (3). The basal activity of sGC is enhanced several hundred fold upon binding of NO to the single regulatory heme site. This stimulation of activity is a result of a conformational change induced by cleavage of the proximal histidine heme ligand upon formation of the ferrous nitrosyl complex, which is preferentially pentacoordinate (4). In addition to heme site regulation of sGC, there are numerous reports indicating that oxidation of cysteine thiol residues on this protein can also alter/regulate both the basal activity and the degree of NO-mediated activation (510).Recently, the one-electron reduced and protonated congener of NO, nitroxyl (HNO) has received significant interest as a cardiovascular agent whose actions are independent of NO formation (11). For example, a study by Ellis and co-workers (12) suggests that HNO is a vital component of endothelium-derived relaxing factor along with NO in rat aorta. HNO is also able to mediate murine aorta vasorelaxation even in the presence of NO scavengers (13). Furthermore, the vasodilation produced by HNO was inhibited by the sGC heme site inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one implicating sGC activation in this HNO-mediated effect. In addition to its effects on large conduit vessels like the aorta, HNO also dilates rat small mesenteric resistance-like arteries through sGC-dependent and voltage-dependent K+ channel-dependent mechanisms (14). Nitroxyl (derived from the HNO-donor Angeli''s salt) is also a potent dilator of feline pulmonary vasculature equal to that of the NO donors SPER/NO, DETA/NO, and SULFI/NO (15). Most recently, HNO was found to be a potent dilator of rat coronary arteries through an sGC-mediated mechanism (16). The evidence presented in these studies suggests that HNO is able to modulate cGMP levels through an interaction with sGC, an idea in conflict with a previous report showing that NO is the only nitrogen oxide capable of directly activating sGC (17).HNO forms a stable adduct with the ferrous heme of deoxymyoglobin (18, 19) providing precedence for a possible interaction between HNO and sGC that is akin to the interaction of NO with ferrous sGC. In light of all the reports indicating possible HNO-mediated activation of sGC, an examination of the direct interaction of HNO with purified sGC was carried out to evaluate the possibility that HNO may be capable of directly interacting with sGC to elicit activation. Moreover, due to the previously reported thiol redox regulation of sGC (see above) and the known thiophilicity of HNO (20), we also examined the effects of HNO-mediated thiol modification on enzyme activity.  相似文献   

7.
Abstract: Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving β-and α1-adrenergic receptors. The effects of N -monomethyl- l -arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited β-adrenergic stimulation of cGMP formation as well as α1-adrenergic potentiation of β-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of l -arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.  相似文献   

8.
The manipulation of vascular endothelial growth factor (VEGF)-receptors (VEGFRs) in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progression of diabetic nephropathy in db/db mice.While diabetes suppressed VEGFR1, it did increase VEGFR2 expressions in the glomerulus. Db/db mice with VEGFR1 inhibition showed more prominent features with respect to, albuminuria, mesangial matrix expansion, inflammatory cell infiltration and greater numbers of apoptotic cells in the glomerulus, and oxidative stress than that of control db/db mice. All these changes were related to the suppression of diabetes-induced increases in PI3K activity and Akt phosphorylation as well as the aggravation of endothelial dysfunction associated with the inactivation of FoxO3a and eNOS-NOx. In cultured human glomerular endothelial cells (HGECs), high-glucose media with VEGFR1 inhibition induced more apoptotic cells and oxidative stress than did high-glucose media alone, which were associated with the suppression of PI3K-Akt phosphorylation, independently of the activation of AMP-activated protein kinase, and inactivation of FoxO3a and eNOS-NOx pathway. In addition, transfection with VEGFR1 siRNA in HGECs also suppressed PI3K-Akt-eNOS signaling.In conclusion, the specific blockade of VEGFR1 with GNQWFI caused severe renal injury related to profound suppression of the PI3K-Akt, FoxO3a and eNOS-NOx pathway, giving rise to the oxidative stress-induced apoptosis of glomerular cells in type 2 diabetic nephropathy.  相似文献   

9.
10.
糖尿病肾病(DN)是糖尿病常见的慢性微血管并发症,最初是由高血糖引起的肾脏适应性高滤过率,进而导致肾脏细胞的代偿性增生、炎症以及纤维化。法尼酯X受体(FXR)被证明对糖尿病肾病有负性调节的作用,FXR可以通过不同的方面(血糖、血脂、炎症以及纤维化)对糖尿病肾病进行调控,从而有效的控制糖尿病肾病的发生和发展。本文将对FXR以及FXR调控糖尿病肾病的不同方面予以综述。  相似文献   

11.
The aims of this study were to investigate the role of poly(ADP-ribose) polymerase (PARP)-1 in dyslipidemia-associated vascular dysfunction as well as autonomic nervous system dysregulation. Apolipoprotein (ApoE)−/− mice fed a high-fat diet were used as a model of atherosclerosis. Vascular and autonomic functions were measured in conscious mice using telemetry. The study revealed that PARP-1 plays an important role in dyslipidemia-associated vascular and autonomic dysfunction. Inhibition of this enzyme by gene knockout partially restored baroreflex sensitivity in ApoE−/− mice without affecting baseline heart-rate and arterial pressure, and also improved heart-rate responses following selective blockade of the autonomic nervous system. The protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction was associated with preservation of eNOS activity. Dyslipidemia induced PARP-1 activation was accompanied by oxidative tissue damage, as evidenced by increased expression of iNOS and subsequent protein nitration. PARP-1 gene deletion reversed these effects, suggesting that PARP-1 may contribute to vascular and autonomic pathologies by promoting oxidative tissue injury. Further, inhibition of this oxidative damage may account for protective effects of PARP-1 gene deletion on vascular and autonomic functions. This study demonstrates that PARP-1 participates in dyslipidemia-mediated dysregulation of the autonomic nervous system and that PARP-1 gene deletion normalizes autonomic and vascular dysfunctions. Maintenance of eNOS activity may be associated with the protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction.  相似文献   

12.
目的:利用血管紧张素I(IAngII)受体拮抗剂缬沙坦(Valsartan)阻断肾素-血管紧张素(RAS)观察其对糖尿病大鼠肾皮质细胞间粘附分子-1(ICAM-1)表达的影响。方法:成年雄性SD大鼠45只,任取其中30只腹腔注射链脲佐菌素制成糖尿病大鼠模型。将糖尿病大鼠随机分为糖尿病缬沙坦治疗组(A组,15只,缬沙坦10mg.kg-1/d灌胃);糖尿病对照组(B组,15只);其余15只为正常对照组(C组)。分别于实验第4、6周末各组任取7或8只测定大鼠血糖、平均动脉压、血肌酐、尿肌酐、尿白蛋白排泄率,用图像分析仪测量各组大鼠平均肾小球面积、平均肾小球体积。并于第6周末取各组大鼠肾皮质提取RNA,用逆转录-PCR(RT-PCR)方法对肾皮质ICAM-1mRNA表达进行半定量分析。结果:在第4周及第6周末,A组血糖、肌酐清除率、尿白蛋白排泄率显著低于同时期的B组,B组则较C组均有不同程度的升高(P〈0.01),A、C组尿白蛋白排泄率始终无统计学差异,同时期三组平均动脉压无统计学差异(P〉0.05)。在4、6周,A、B组的肾小球平均面积、平均体积均明显高于同期的C组(P〈0.01),但A组又低于同期的B组。RT-PCR半定量结果分析显示,B组ICAM-1 mRNA表达较A、C组显著增高(P〈0.01),A组表达较C组为高(P〈0.01),但仍较B组为低(P〈0.01)。结论:血管紧张素I(IAngII)受体拮抗剂缬沙坦能够减少糖尿病大鼠的尿白蛋白排泄,下调肾皮质ICAM-1mRNA表达,减轻肾脏肥大及延缓肾小球硬化,具有保护肾脏的作用。  相似文献   

13.
While neurohumoral antagonists improve outcomes in heart failure (HF), cardiac remodeling and dysfunction progress and outcomes remain poor. Therapies superior or additive to standard HF therapy are needed. Pharmacologic mTOR inhibition by rapamycin attenuated adverse cardiac remodeling and dysfunction in experimental heart failure (HF). However, these studies used rapamycin doses that produced blood drug levels targeted for primary immunosuppression in human transplantation and therefore the immunosuppressive effects may limit clinical translation. Further, the relative or incremental effect of rapamycin combined with standard HF therapies targeting upstream regulators of cardiac remodeling (neurohumoral antagonists) has not been defined. Our objectives were to determine if anti-remodeling effects of rapamycin were preserved at lower doses and whether rapamycin effects were similar or additive to a standard HF therapy (angiotensin receptor blocker (losartan)). Experimental murine HF was produced by transverse aortic constriction (TAC). At three weeks post-TAC, male mice with established HF were treated with placebo, rapamycin at a dose producing immunosuppressive drug levels (target dose), low dose (50% target dose) rapamycin, losartan or rapamycin + losartan for six weeks. Cardiac structure and function (echocardiography, catheterization, pathology, hypertrophic and fibrotic gene expression profiles) were assessed. Downstream mTOR signaling pathways regulating protein synthesis (S6K1 and S6) and autophagy (LC3B-II) were characterized. TAC-HF mice displayed eccentric hypertrophy, systolic dysfunction and pulmonary congestion. These perturbations were attenuated to a similar degree by oral rapamycin doses achieving target (13.3±2.1 ng/dL) or low (6.7±2.5 ng/dL) blood levels. Rapamycin treatment decreased mTOR mediated regulators of protein synthesis and increased mTOR mediated regulators of autophagy. Losartan monotherapy did not attenuate remodeling, whereas Losartan added to rapamycin provided no incremental benefit over rapamycin alone. These data lend support to investigation of low dose rapamycin as a novel therapy in human HF.  相似文献   

14.
15.
In heart tissue from mice lacking the intermediate filament (IF) desmin, mitochondria show an abnormal shape and distribution (Thornell et al., 1997). In the present study we have isolated heart mitochondria from desmin null (D–/–) and control (D+/+) mice, and analyzed their composition by SDS–PAGE, immunoblotting, and enzyme measurements. We found both in vitro and in situ that the conventional kinesin, the microtubule-associated plus-end directed motor, was frequently associated with D+/+ heart mitochondria, but not with D–/– heart mitochondria, suggesting that the positioning of mitochondria in heart is a dynamic event involving the IF desmin, the molecular motor kinesin, and, most likely, the microtubules (MT) network. Furthermore, an increased capacity in energy production was found, as indicated by a threefold higher creatine kinase activity in heart mitochondria from D–/– compared to D+/+ mice. We also observed a significantly lower amount of cytochrome c in heart mitochondria from D–/– mice, and a relocalization of Bcl-2, which may indicate an apoptotic condition in the cell leading to the earlier reported pathological events, such as cardiomyocytes degeneration and calcinosis of the heart (Thornell et al., 1997).  相似文献   

16.
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-β (TGF-β) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-β-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.  相似文献   

17.
18.

Background

The aim of the current study was to investigate the role of p55 TNF Receptor (p55 TNFR), the main signaling receptor for the pro-inflammatory cytokine tumor necrosis factor (TNF), in the development of two vascular disorders: atherosclerosis and angiotensin (Ang) II-induced abdominal aortic aneurysms (AAA).

Methodology/Principal Findings

p55 TNFR deficient mice were crossed to an LDL receptor deficient background and were induced for the development of either atherosclerosis or AngII-induced AAA, and compared to littermate controls, wild-type for p55 TNFR expression. p55 TNFR deficient mice developed 43% smaller atherosclerotic lesions in the aortic sinuses compared to controls. Moreover, expression of CD68, a macrophage specific marker, exhibited a 50% reduction in the aortic arches. Decreased atherosclerosis correlated with a strong down-regulation in the expression of adhesion molecules, such as VCAM-1 and ICAM-1, by p55 TNFR deficient endothelium. In addition, expression levels of the pro-inflammatory cytokines and chemokines TNF, IL-6, MCP-1 and RANTES were significantly reduced in aortas of p55 TNFR deficient mice. In contrast, in the AngII-induced model of AAA, p55 TNFR deficiency correlated with a slight trend towards increased aneurismal lethality, but the incidence of aortic rupture due to a dissecting aneurysm, and the expansion of the suprarenal aorta were not significantly different compared to controls.

Conclusion/Significance

We found that p55 TNFR expression promotes atherosclerosis, among other mechanisms, by enhancing expression of endothelial adhesion molecules, while it seems to have no major role in the development of AngII-induced AAA.  相似文献   

19.

Objective

Inflammation and fibrosis are essential promoters in the pathogenesis of diabetic nephropathy (DN) in type 2 diabetes. The present study examined the anti-inflammation and anti-fibrosis effect of Tangshen Formula (TSF), a traditional Chinese medicine, on DN.

Research Design and Methods

Protective role of TSF in DN was examined in a rat model of type 2 DN that was established by high-fat diet-fed and low-dose-streptozotocin injection. TSF was suspended in 0.5% CMC-Na solution and delivered by oral gavage at a dosage of 1.67g/Kg body weight/day. The therapeutic effects and mechanisms of TSF on diabetic kidney injury were examined.

Results

We found that TSF treatment for 20 weeks attenuated DN by significantly inhibiting urinary excretion of albumin and renal histological injuries. These beneficial effects were associated with an inactivation of NF-κB signaling, thereby blocking the upregulation of pro-inflammatory cytokines (IL-1β, TNFα), chemokine (MCP-1), and macrophage infiltration in the TSF-treated rats with type 2 DN. In addition, TSF treatment also inactivated TGF-β/Smad3 signaling and therefore suppressed renal fibrosis including expressions of fibronectin, collagen I, and collagen IV. Further studies revealed that the inhibitory effect of TSF on TGF-β/Smad3 and NF-κB signaling in DN was associated with inhibition of Smurf2-dependent ubiquitin degradation of Smad7.

Conclusions

The present study reveals that TSF has therapeutic potential for type 2 DN in rats. Blockade of NF-κB-driven renal inflammation and TGF-β/Smad3-mediated renal fibrosis by preventing the Smurf2-mediated Smad7 degradation pathway may be mechanisms through which TSF inhibits type 2 DN.  相似文献   

20.
The activity of soluble and particulate guanylate cyclase (EC 4.6.1.2) has been compared with the distribution of neurotransmitter candidates in three rat forebrain nuclei, and the effects of local kainic acid injections into these nuclei have been tested. Soluble guanylate cyclase was highly concentrated in both the caudatoputamen and the nucleus accumbens, with lower activity found in the septum. This distribution coincided with markers for acetylcholine and monoamines, but not with markers for γ-aminobutyrate (GABA) or glutamate neurons. In contrast, particulate guanylate cyclase was equally active in all regions. Local injections of kainic acid, which destroyed cholinergic and GABA neurons in the caudatoputamen and in the nucleus accumbens, caused a rapid (70–90%) decrease in the soluble guanylate cyclase and a slower 50-60% fall in the particulate guanylate cyclase in these nuclei. In the septum, where kainate destroyed GABA cells but not cholinergic neurons, the guanylate cyclase activity was unchanged after the lesion. Thus, both the soluble and particulate guanylate cyclases appear to be concentrated in local neurons in the caudatoputamen and nucleus accumbens. In the septum, however, most of the guanylate cyclase activity is located outside kainate-sensitive neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号