首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oxidative stress-sensitive protein was found in the microaerophile Campylobacter jejuni. A novel 27-kDa protein was found to decrease concomitantly with a decrease in viability from either exogenous H(2)O(2) stress or endogenous oxidative stresses in aerobic conditions. Sequence analyses revealed that the 27-kDa protein was identical to Cj0012c in C. jejuni NCTC11168 and its deduced 215 amino acid sequence has similarity to two non-heme iron proteins found in other bacteria, rubredoxin oxidoreductase (Rbo) and rubrerythrin (Rbr). Thus, we designated the protein as Rrc (Rbo/Rbr-like protein of C. jejuni). In H(2)O(2)-treated cells, Western blot analysis showed some bands smaller than Rrc, and RT-PCR showed similar expression of Rrc mRNA to the control without treatment, suggesting that the sensitive response of Rrc to oxidative stress is due to degradation of the protein.  相似文献   

2.
3.
4.
We have identified several protein biomarkers of three Campylobacter jejuni strains (RM1221, RM1859, and RM3782) by proteomic techniques. The protein biomarkers identified are prominently observed in the time-of-flight mass spectra (TOF MS) of bacterial cell lysate supernatants ionized by matrix-assisted laser desorption/ionization (MALDI). The protein biomarkers identified were: DNA-binding protein HU, translation initiation factor IF-1, cytochrome c553, a transthyretin-like periplasmic protein, chaperonin GroES, thioredoxin Trx, and ribosomal proteins: L7/L12 (50S), L24 (50S), S16 (30S), L29 (50S), and S15 (30S), and conserved proteins similar to strain NCTC 11168 proteins Cj1164 and Cj1225. The protein biomarkers identified appear to represent high copy, intact proteins. The significant findings are as follows: (1) Biomarker mass shifts between these strains were due to amino acid substitutions of the primary polypeptide sequence and not due to changes in post-translational modifications (PTMs). (2) If present, a PTM of a protein biomarker appeared consistently for all three strains, which supported that the biomarker mass shifts observed between strains were not due to PTM variability. (3) The PTMs observed included N-terminal methionine (N-Met) cleavage as well as a number of other PTMs. (4) It was discovered that protein biomarkers of C. jejuni (as well as other thermophilic Campylobacters) appear to violate the N-Met cleavage rule of bacterial proteins, which predicts N-Met cleavage if the penultimate residue is threonine. Two protein biomarkers (HU and 30S ribosomal protein S16) that have a penultimate threonine residue do not show N-Met cleavage. In all other cases, the rule correctly predicted N-Met cleavage among the biomarkers analyzed. This exception to the N-Met cleavage rule has implications for the development of bioinformatics algorithms for protein/pathogen identification. (5) There were fewer biomarker mass shifts between strains RM1221 and RM1859 compared to strain RM3782. As the mass shifts were due to the frequency of amino acid substitutions (and thus underlying genetic variations), this suggested that strains RM1221 and RM1859 were phylogenetically closer to one another than to strain RM3782 (in addition, a protein biomarker prominent in the spectra of RM1221 and RM1859 was absent from the RM3782 spectrum due to a nonsense mutation in the gene of the biomarker). These observations were confirmed by a nitrate reduction test, which showed that RM1221 and RM1859 were C. jejuni subsp. jejuni whereas RM3782 was C. jejuni subsp. doylei. This result suggests that detection/identification of protein biomarkers by pattern recognition and/or bioinformatics algorithms may easily subspeciate bacterial microorganisms. (6) Finally, the number and variation of PTMs detected in this relatively small number of protein biomarkers suggest that bioinformatics algorithms for pathogen identification may need to incorporate many more possible PTMs than suggested previously in the literature.  相似文献   

5.
Analysis of the complete flagellin glycosylation locus of Campylobacter jejuni strain 81-176 revealed a less complex genomic organization than the corresponding region in the genome strain, C. jejuni NCTC 11168. Twenty-four of the 45 genes found between Cj1293 and Cj1337 in NCTC 11168 are missing in 81-176. Mutation of six new genes, in addition to three previously reported, resulted in a non-motile phenotype, consistent with a role in synthesis of pseudaminic acid (PseAc) or transfer of PseAc to flagellin. Mutation of Cj1316c or pseA had been shown to result in loss of the acetamidino form of pseudaminic acid (PseAm). Mutation of a second gene also resulted in loss of PseAm, as well as a minor modification that appears to be PseAm extended with N-acetyl-glutamic acid. Previously described mutants in C. jejuni 81-176 and Campylobacter coli VC167 that produced flagella lacking PseAm or PseAc failed to autoagglutinate. This suggests that interactions between modifications on adjacent flagella filaments are required for autoagglutination. Mutants (81-176) defective in autoagglutination showed a modest reduction in adherence and invasion of INT407 cells. However, there was a qualitative difference in binding patterns to INT407 cells using GFP-labelled 81-176 and mutants lacking PseAm. A mutant lacking PseAm was attenuated in the ferret diarrhoeal disease model.  相似文献   

6.
Ganglioside mimicry by Campylobacter jejuni lipo-oligosaccharide (LOS) is thought to be a critical factor in the triggering of the Guillain-Barré and Miller-Fisher syndrome neuropathies after C. jejuni infection. The combination of a completed genome sequence and a ganglioside GM1-like LOS structure makes C. jejuni NCTC 11168 a useful model strain for the identification and characterization of the genes involved in the biosynthesis of ganglioside-mimicking LOS. Genome analysis identified a putative LOS biosynthetic cluster and, from this, we describe a putative gene (ORF Cj1139c), which we have termed wlaN, with a significant level of similarity to a number of bacterial glycosyltransferases. Mutation of this gene in C. jejuni NCTC 11168 resulted in a LOS molecule of increased electrophoretic mobility, which also failed to bind cholera toxin. Comparison of LOS structural data from wild type and the mutant strain indicated lack of a terminal beta-1,3-linked galactose residue in the latter. The wlaN gene product was demonstrated unambiguously as a beta-1,3 galactosyltransferase responsible for converting GM2-like LOS structures to GM1-like by in vitro expression. We also show that the presence of an intragenic homopolymeric tract renders the expression of a functional wlaN gene product phase variable, resulting in distinct C. jejuni NCTC 11168 cell populations with alternate GM1 or GM2 ganglioside-mimicking LOS structures. The distribution of wlaN among a number of C. jejuni strains with known LOS structure was determined and, for C. jejuni NCTC 12500, similar wlaN gene phase variation was shown to occur, so that this strain has the potential to synthesize a GM1-like LOS structure as well as the ganglioside GM2-like LOS structure proposed in the literature.  相似文献   

7.
A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni.  相似文献   

8.
The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal concentrations of TSP. Preexposure of C. jejuni to TSP resulted in a significant increase in heat sensitivity, suggesting that a combined heat and TSP treatment may increase reduction of C. jejuni. A microarray analysis identified a limited number of genes that were differently expressed after sublethal TSP exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E. coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaβN (Phe-Arg β-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters and RND multidrug efflux pumps function in tolerance to sublethal TSP exposure in C. jejuni.  相似文献   

9.
Campylobacter spp. are a significant contributor to the bacterial etiology of acute gastroenteritis in humans. Epidemiological evidence implicates poultry as a major source of the organism for human illness. However, the factors involved in colonization of poultry with Campylobacter spp. remain unclear. Determining colonization-associated factors at the proteome level should facilitate our understanding of Campylobacter spp. contamination of poultry. Therefore, proteomic analyses were utilized to identify expression differences between two Campylobacter jejuni isolates, a robust colonizer A74/C and a poor colonizing strain of the chicken gastrointestinal system designated NCTC 11168-PMSRU. Proteomic analyses by two-dimensional gel electrophoresis revealed the specific expression of an outer membrane-fibronectin binding protein, serine protease, and a putative aminopeptidase in the soluble portion of the robust colonizer A74C. Several proteins including a cysteine synthase and aconitate hydratase were detected specifically in the poor colonizer C. jejuni NCTC 11168-PMSRU isolate. Variation in the amino acid sequences resulting in different isoelectric points and relative mobility of the flagellin and C. jejuni major outer membrane (MOMP) protein were also detected between the two isolates. Western blotting of the bacterial proteins revealed the presence of two flagellin proteins in the poor colonizer versus one in the robust colonizing isolate, but no differences in MOMP. The results demonstrated that proteomics is useful for characterizing phenotypic variation among Campylobacter spp. isolates. Interestingly, different gene products potentially involved in robust colonization of chickens by Campylobacter spp. appear to conform to recently identified expression patterns in Biofilm or agar-adapted isolates.  相似文献   

10.
Amino acids are key carbon and energy sources for the asaccharolytic food-borne human pathogen Campylobacter jejuni . During microaerobic growth in amino acid rich complex media, aspartate, glutamate, proline and serine are the only amino acids significantly utilized by strain NCTC 11168. The catabolism of aspartate and glutamate was investigated. An aspartase ( aspA ) mutant (unable to utilize any amino acid except serine) and a Cj0762 c ( aspB ) mutant lacking aspartate:glutamate aminotransferase (unable to utilize glutamate), were severely growth impaired in complex media, and an aspA sdaA mutant (also lacking serine dehydratase) failed to grow in complex media unless supplemented with pyruvate and fumarate. Aspartase was shown by activity and proteomic analyses to be upregulated by oxygen limitation, and aspartate enhanced oxygen-limited growth of C. jejuni in an aspA -dependent manner. Stoichiometric aspartate uptake and succinate excretion involving the redundant DcuA and DcuB transporters indicated that in addition to a catabolic role, AspA can provide fumarate for respiration. Significantly, an aspA mutant of C. jejuni 81-176 was impaired in its ability to persist in the intestines of outbred chickens relative to the parent strain. Together, our data highlight the dual function of aspartase in C. jejuni and suggest a role during growth in the avian gut.  相似文献   

11.
Campylobacter jejuni produces both lipooligosaccharide (LOS) and a higher-molecular-weight polysaccharide that is believed to form a capsule. The role of these surface polysaccharides in C. jejuni-mediated enteric disease is unclear; however, epitopes associated with the LOS are linked to the development of neurological complications. In Escherichia coli and Salmonella enterica serovar Typhimurium the waaF gene encodes a heptosyltransferase, which catalyzes the transfer of the second L-glycero-D-manno-heptose residue to the core oligosaccharide moiety of lipopolysaccharide (LPS), and mutation of waaF results in a truncated core oligosaccharide. In this report we confirm experimentally that C. jejuni gene Cj1148 encodes the heptosyltransferase II enzyme, WaaF. The Campylobacter waaF gene complements an S. enterica serovar Typhimurium waaF mutation and restores the ability to produce full-sized lipopolysaccharide. To examine the role of WaaF in C. jejuni, waaF mutants were constructed in strains NCTC 11168 and NCTC 11828. Loss of heptosyltransferase activity resulted in the production of a truncated core oligosaccharide, failure to bind specific ligands, and loss of serum reactive GM(1), asialo-GM(1), and GM(2) ganglioside epitopes. The mutation of waaF did not affect the higher-molecular-weight polysaccharide supporting the production of a LOS-independent capsular polysaccharide by C. jejuni. The exact structural basis for the truncation of the core oligosaccharide was verified by comparative chemical analysis. The NCTC 11168 core oligosaccharide differs from that known for HS:2 strain CCUG 10936 in possessing an extra terminal disaccharide of galactose-beta(1,3) N-acetylgalactosamine. In comparison, the waaF mutant possessed a truncated molecule consistent with that observed with waaF mutants in other bacterial species.  相似文献   

12.
13.
N-acetyl neuraminic acid (NANA) is a common constituent of Campylobacter jejuni lipo-oligosaccharide (LOS). Such structures often mimic human gangliosides and are thought to be involved in the triggering of Guillain-Barré syndrome (GBS) and Miller-Fisher syndrome (MFS) following C. jejuni infection. Analysis of the C. jejuni NCTC 11168 genome sequence identified three putative NANA synthetase genes termed neuB1, neuB2 and neuB3. The NANA synthetase activity of all three C. jejuni neuB gene products was confirmed by complementation experiments in an Escherichia coli neuB-deficient strain. Isogenic mutants were created in all three neuB genes, and for one such mutant (neuB1) LOS was shown to have increased mobility. C. jejuni NCTC 11168 wild-type LOS bound cholera toxin, indicating the presence of NANA in a LOS structure mimicking the ganglioside GM1. This property was lost in the neuB1 mutant. Gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry analysis of LOS from wild-type and the neuB1 mutant strain demonstrated the lack of NANA in the latter. Expression of the neuB1 gene in E. coli confirmed that NeuB1 was capable of in vitro NANA biosynthesis through condensation of N-acetyl-D-mannosamine and phosphoenolpyruvate. Southern analysis demonstrated that the neuB1 gene was confined to strains of C. jejuni with LOS containing a single NANA residue. Mutagenesis of neuB2 and neuB3 did not affect LOS, but neuB3 mutants were aflagellate and non-motile. No phenotype was evident for neuB2 mutants in strain NCTC 11168, but for strain G1 the flagellin protein from the neuB2 mutant showed an apparent reduction in molecular size relative to the wild type. Thus, the neuB genes of C. jejuni appear to be involved in the biosynthesis of at least two distinct surface structures: LOS and flagella.  相似文献   

14.
In line with our on-going efforts to create a multivalent anti-Campylobacter jejuni vaccine based on its capsule polysaccharides (CPSs), we report here the chemical structure and the genetic locus of the CPS produced by C. jejuni strain CG8486, which belongs to the serotype HS:4 CPS complex. C. jejuni CG8486 CPS was observed to be composed of approximately 17 disaccharide repeating blocks of 4-substituted N-acetyl-beta-D-glucopyranosamine and 3-substituted 6-deoxy-beta-D-ido-heptopyranose. A small number of 6-deoxy-beta-D-ido-heptopyranose units were observed to carry O-methyl phosphoramidate moieties at the O-2 or O-7 position. The gene content and organization of the CPS locus of C. jejuni CG8486 were comparable to those of C. jejuni strains NCTC 11168 and 81-176, but several CG8486 CPS genes were observed to be more divergent from those present in the CPS loci of NCTC 11168 and 81-176 CPS, which indicated that there are genetic characteristics specific to the C. jejuni HS:4 CPS complex. The efficacy of a glycoconjugate vaccine based on C. jejuni CG8486 CPS is presently being tested in an animal model, the results of which will be presented in future communications.  相似文献   

15.
Campylobacter jejuni infections are one of the leading causes of human gastroenteritis and are suspected of being a precursor to Guillain-Barré and Miller-Fisher syndromes. Recently, the complete genome sequence of C. jejuni NCTC 11168 was described. In this study, the molecular structure of the lipooligosaccharide and capsular polysaccharide of C. jejuni NCTC 11168 was investigated. The lipooligosaccharide was shown to exhibit carbohydrate structures analogous to the GM1a and GM2 carbohydrate epitopes of human gangliosides (shown below): The high Mr capsule polysaccharide was composed of beta-d-Ribp, beta-d-GalfNAc, alpha-d-GlcpA6(NGro), a uronic acid amidated with 2-amino-2-deoxyglycerol at C-6, and 6-O-methyl-d-glycero-alpha-l-gluco-heptopyranose as a side-branch (shown below): The structural information presented here will aid in the identification and characterization of specific enzymes that are involved in the biosynthesis of these structures and may lead to the discovery of potential therapeutic targets. In addition, the correlation of carbohydrate structure with gene complement will aid in the elucidation of the role of these surface carbohydrates in C. jejuni pathogenesis.  相似文献   

16.
AIMS: The purpose of this study was to develop a food-based model system that resembles the environment that Campylobacter jejuni experiences on raw poultry products and use this model system to investigate growth and survival of the bacterium. METHODS AND RESULTS: Chicken juice was collected from frozen chickens and subsequently cleared by centrifugation and subjected to sterile filtration. At low temperatures (5 and 10 degrees C) C. jejuni NCTC11168 remained viable in chicken juice for a remarkably longer period of time than in the reference medium BHI. When exposed to heat stress (48 degrees C) C. jejuni NCTC11168 also showed increased viability in chicken juice compared with the reference medium. Furthermore, agar plates made with chicken juice supported growth of four clinical isolates of C. jejuni and a C. jejuni strain obtained from chicken at both 37 and 42 degrees C. CONCLUSIONS: Our work shows that minimal processed and sterilized chicken juice is an ideal environment for survival of C. jejuni and that it is useful as a food-based model system. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed model system may contribute to the understanding of C. jejuni viability on poultry products and can be instrumental in the development of alternative preservation strategies.  相似文献   

17.
We have applied two strategies for the cloning of four genes responsible for the biosynthesis of the GT1a ganglioside mimic in the lipooligosaccharide (LOS) of a bacterial pathogen, Campylobacter jejuni OH4384, which has been associated with Guillain-Barré syndrome. We first cloned a gene encoding an alpha-2, 3-sialyltransferase (cst-I) using an activity screening strategy. We then used nucleotide sequence information from the recently completed sequence from C. jejuni NCTC 11168 to amplify a region involved in LOS biosynthesis from C. jejuni OH4384. The LOS biosynthesis locus from C. jejuni OH4384 is 11.47 kilobase pairs and encodes 13 partial or complete open reading frames, while the corresponding locus in C. jejuni NCTC 11168 spans 13.49 kilobase pairs and contains 15 open reading frames, indicating a different organization between these two strains. Potential glycosyltransferase genes were cloned individually, expressed in Escherichia coli, and assayed using synthetic fluorescent oligosaccharides as acceptors. We identified genes encoding a beta-1, 4-N-acetylgalactosaminyl-transferase (cgtA), a beta-1, 3-galactosyltransferase (cgtB), and a bifunctional sialyltransferase (cst-II), which transfers sialic acid to O-3 of galactose and to O-8 of a sialic acid that is linked alpha-2,3- to a galactose. The linkage specificity of each identified glycosyltransferase was confirmed by NMR analysis at 600 MHz on nanomole amounts of model compounds synthesized in vitro. Using a gradient inverse broadband nano-NMR probe, sequence information could be obtained by detection of (3)J(C,H) correlations across the glycosidic bond. The role of cgtA and cst-II in the synthesis of the GT1a mimic in C. jejuni OH4384 were confirmed by comparing their sequence and activity with corresponding homologues in two related C. jejuni strains that express shorter ganglioside mimics in their LOS.  相似文献   

18.
摘要:【目的】构建空肠弯曲菌(Campylobacter jejuni)cheA基因插入突变株,了解CheA与空肠弯曲菌小鼠体内定植的相关性。【方法】运用同源重组的原理构建空肠弯曲菌cheA基因突变株,采用PCR技术检测cheA突变株的构建情况。通过基因回补试验构建cheA基因回补株。空肠弯曲菌感染小鼠,运用小鼠空肠内容物涂板计数的方法检测cheA突变株、cheA基因回补株和野生株定植小鼠能力的差异。【结果】PCR检测显示成功构建cheA基因突变株。空肠弯曲菌cheA基因突变株定植小鼠空肠的数量明显减少(P<0.05);cheA基因回补株定植小鼠空肠的数量跟野生株相比无明显差异(P>0.05)。【结论】本研究成功构建cheA基因突变株及其回补株。cheA基因可能参与空肠弯曲菌在小鼠体内定植的过程。  相似文献   

19.
It was demonstrated recently that there is a system of general protein glycosylation in the human enteropathogen Campylobacter jejuni. To characterize such glycoproteins, we identified a lectin, Soybean agglutinin (SBA), which binds to multiple C. jejuni proteins on Western blots. Binding of lectin SBA was disrupted by mutagenesis of genes within the previously identified protein glycosylation locus. This lectin was used to purify putative glycoproteins selectively and, after sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE), Coomassie-stained bands were cut from the gels. The bands were digested with trypsin, and peptides were identified by mass spectrometry and database searching. A 28kDa band was identified as PEB3, a previously characterized immunogenic cell surface protein. Bands of 32 and 34kDa were both identified as a putative periplasmic protein encoded by the C. jejuni NCTC 11168 coding sequence Cj1670c. We have named this putative glycoprotein CgpA. We constructed insertional knockout mutants of both the peb3 and cgpA genes, and surface protein extracts from mutant and wild-type strains were analysed by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE). In this way, we were able to identify the PEB3 protein as a 28 kDa SBA-reactive and immunoreactive glycoprotein. The cgpA gene encoded SBA-reactive and immunoreactive proteins of 32 and 34 kDa. By using specific exoglycosidases, we demonstrated that the SBA binding property of acid-glycine extractable C. jejuni glycoproteins, including PEB3 and CgpA, is a result of the presence of alpha-linked N-acetylgalactosamine residues. These data confirm the existence, and extend the boundaries, of the previously identified protein glycosylation locus of C. jejuni. Furthermore, we have identified two such glycoproteins, the first non-flagellin campylobacter glycoproteins to be identified, and demonstrated that their glycan components contain alpha-linked N-acetylgalactosamine residues.  相似文献   

20.
This study describes a novel approach to identify unique genomic DNA sequences from the unsequenced strain C. jejuni ATCC 43431 by comparison with the sequenced strain C. jejuni NCTC 11168. A shotgun DNA microarray was constructed by arraying 9,600 individual DNA fragments from a C. jejuni ATCC 43431 genomic library onto a glass slide. DNA fragments unique to C. jejuni ATCC 43431 were identified by competitive hybridization to the array with genomic DNA of C. jejuni NCTC 11168. The plasmids containing unique DNA fragments were sequenced, allowing the identification of up to 130 complete and incomplete genes. Potential biological roles were assigned to 66% of the unique open reading frames. The mean G+C content of these unique genes (26%) differs significantly from the G+C content of the entire C. jejuni genome (30.6%). This suggests that they may have been acquired through horizontal gene transfer from an organism with a G+C content lower than that of C. jejuni. Because the two C. jejuni strains differ by Penner serotype, a large proportion of the unique ATCC 43431 genes encode proteins involved in lipooligosaccharide and capsular biosynthesis, as expected. Several unique open reading frames encode enzymes which may contribute to genetic variability, i.e., restriction-modification systems and integrases. Interestingly, many of the unique C. jejuni ATCC 43431 genes show identity with a possible pathogenicity island from Helicobacter hepaticus and components of a potential type IV secretion system. In conclusion, this study provides a valuable resource to further investigate Campylobacter diversity and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号