首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABAARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABAAR expression on brainstem neurons of the ventral respiratory column (VRC). In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC) were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABAAR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABAAR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors) in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABAAR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life) despite increased neurosteroid levels during pregnancy.  相似文献   

2.

Background

Neural inhibition plays an important role in auditory processing and attentional gating. Extrasynaptic GABAA receptors (GABAAR), containing α4and δ GABAAR subunits, are thought to be activated by GABA spillover outside of the synapse following release resulting in a tonic inhibitory Cl current which could account for up to 90% of total inhibition in visual and somatosensory thalamus. However, the presence of this unique type of inhibition has not been identified in auditory thalamus.

Methodology/Principal Findings

The present study used gaboxadol, a partially selective potent agonist for δ-subunit containing GABAA receptor constructs to elucidate the presence of extrasynaptic GABAARs using both a quantitative receptor binding assay and patch-clamp electrophysiology in thalamic brain slices. Intense [3H]gaboxadol binding was found to be localized to the MGB while whole cell recordings from MGB neurons in the presence of gaboxadol demonstrated the expression of δ-subunit containing GABAARs capable of mediating a tonic inhibitory Cl current.

Conclusions/Significance

Potent tonic inhibitory GABAAR responses mediated by extrasynaptic receptors may be important in understanding how acoustic information is processed by auditory thalamic neurons as it ascends to auditory cortex. In addition to affecting cellular behavior and possibly neurotransmission, functional extrasynaptic δ-subunit containing GABAARs may represent a novel pharmacological target for the treatment of auditory pathologies including temporal processing disorders or tinnitus.  相似文献   

3.
γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.  相似文献   

4.
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABAA receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABAA receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABAA receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABAA receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABAA receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABAA receptor subtypes and might contribute to anchoring and/or confining GABAA receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.  相似文献   

5.
Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs.  相似文献   

6.
7.
Photoaffinity labeling of γ-aminobutyric acid type A (GABAA)-receptors (GABAAR) with an etomidate analog and mutational analyses of direct activation of GABAAR by neurosteroids have each led to the proposal that these structurally distinct general anesthetics bind to sites in GABAARs in the transmembrane domain at the interface between the β and α subunits. We tested whether the two ligand binding sites might overlap by examining whether neuroactive steroids inhibited etomidate analog photolabeling. We previously identified (Li, G. D., Chiara, D. C., Sawyer, G. W., Husain, S. S., Olsen, R. W., and Cohen, J. B. (2006) J. Neurosci. 26, 11599–11605) azietomidate photolabeling of GABAAR α1Met-236 and βMet-286 (in αM1 and βM3). Positioning these two photolabeled amino acids in a single type of binding site at the interface of β and α subunits (two copies per pentamer) is consistent with a GABAAR homology model based upon the structure of the nicotinic acetylcholine receptor and with recent αM1 to βM3 cross-linking data. Biologically active neurosteroids enhance rather than inhibit azietomidate photolabeling, as assayed at the level of GABAAR subunits on analytical SDS-PAGE, and protein microsequencing establishes that the GABAAR-modulating neurosteroids do not inhibit photolabeling of GABAAR α1Met-236 or βMet-286 but enhance labeling of α1Met-236. Thus modulatory steroids do not bind at the same site as etomidate, and neither of the amino acids identified as neurosteroid activation determinants (Hosie, A. M., Wilkins, M. E., da Silva, H. M., and Smart, T. G. (2006) Nature 444, 486–489) are located at the subunit interface defined by our etomidate site model.GABAA3 receptors (GABAAR) are major mediators of brain inhibitory neurotransmission and participate in most circuits and behavioral pathways relevant to normal and pathological function (1). GABAAR are subject to modulation by endogenous neurosteroids, as well as myriad clinically important central nervous system drugs including general anesthetics, benzodiazepines, and possibly ethanol (1, 2). The mechanism of GABAAR modulation by these different classes of drugs is of major interest, including identification of the receptor amino acid residues involved in binding and action of the drugs.In the absence of high resolution crystal structures of drug-receptor complexes, the locations of anesthetic binding sites in GABAARs have been predicted based upon analyses of functional properties of point mutant receptors, which identified residues in the α and β subunit M1–M4 transmembrane helices important for modulation by volatile anesthetics (primarily α subunit) and by intravenous agents, including etomidate and propofol (β subunit) (35). Position βM2–15, numbered relative to the N terminus of the helix, functions as a major determinant of etomidate and propofol potency as GABA modulators in vitro and in vivo (68). By contrast, this residue is not implicated for modulation by the neurosteroids, potent endogenous modulators of GABAAR (9).Photoaffinity labeling, which allows the identification of residues in proximity to drug binding sites (10, 11), has been used to identify two GABAAR amino acids covalently modified by the etomidate analog [3H]azietomidate (12): α1Met-236 within αM1 and βMet-286 within βM3. Photolabeling of these residues was inhibited equally by nonradioactive etomidate and enhanced proportionately by GABA present in the assay, consistent with the presence of these two residues in a common drug binding pocket that would be located at the interface between the β and α subunits in the transmembrane domain (12). Mutational analyses identify these positions as etomidate and propofol sensitivity determinants (1315).A recent mutagenesis study (16) identified two other residues in GABAAR αM1 and βM3 as critical for direct activation by neurosteroids, αThr-236 (rat numbering, corresponding to α1Thr-237, bovine numbering used here and by Li et al. (12))4 and βTyr-284. These residues were also proposed to contribute to a neurosteroid binding pocket in the transmembrane domain at the interface between β and α subunits, based upon their location in an alternative GABAAR structural model that positioned those amino acids, and not α1Met-236 or βMet-286, at the subunit interface. For GABAARs and other members of the Cys-loop superfamily of neurotransmitter-gated ion channels, the transmembrane domain of each subunit is made up of a loose bundle of four α helices (M1–M4), with M2 from each subunit contributing to the lumen of the ion channel and M4 positioned peripherally in greatest contact with lipid, as seen in the structures of the Torpedo nicotinic acetylcholine receptor (nAChR) (17) and in distantly related prokaryote homologs (18). However, uncertainties in the alignment of GABAAR subunit sequences relative to those of the nAChR result in alternative GABAAR homology models (12, 19, 20) that differ in the location of amino acids in the M3 and M4 membrane-spanning helices and in the M1 helix in some models (16, 21).If etomidate and neurosteroids both bind at the same β/α interface in the GABAAR transmembrane domain, the limited space available for ligand binding suggests that their binding pockets might overlap and that ligand binding would be mutually exclusive. To address this question, we photolabeled purified bovine brain GABAAR with [3H]azietomidate in the presence of different neuroactive steroids and determined by protein microsequencing whether active neurosteroids inhibited labeling of α1Met-236 and βMet-286, as expected for mutually exclusive binding, or resulted in [3H]azietomidate photolabeling of other amino acids, a possible consequence of allosteric interactions. Active steroids failed to inhibit labeling and enhanced labeling of α1Met-236, clearly indicating that the neurosteroid and the etomidate sites are distinct. Our GABAAR homology model that positions α1Met-236 and βMet-286 at the β/α interface, but not that of Hosie et al. (16), is also consistent with cysteine substitution cross-linking studies (20, 22), which define the proximity relations between amino acids in the αM1, αM2, αM3, and βM3 helices, and these results support the interpretation that the two residues photolabeled by [3H]azietomidate are part of a single subunit interface binding pocket, whereas the steroid sensitivity determinants identified by mutagenesis neither are at the β/α subunit interface nor are contributors to a common binding pocket.  相似文献   

8.
The γ-aminobutyric acid type A (GABAA) receptors play a pivotal role in fast synaptic inhibition in the central nervous system. One of the key factors for determining synaptic strength is the number of receptors on the postsynaptic membrane, which is maintained by the balance between cell surface insertion and endocytosis of the receptors. In this study, we investigated whether phospholipase C-related but catalytically inactive protein (PRIP) is involved in insulin-induced GABAA receptor insertion. Insulin potentiated the GABA-induced Cl current (IGABA) by about 30% in wild-type neurons, but not in PRIP1 and PRIP2 double-knock-out (DKO) neurons, suggesting that PRIP is involved in insulin-induced potentiation. The phosphorylation level of the GABAA receptor β-subunit was increased by about 30% in the wild-type neurons but not in the mutant neurons, which were similar to the changes observed in IGABA. We also revealed that PRIP recruited active Akt to the GABAA receptors by forming a ternary complex under insulin stimulation. The disruption of the binding between PRIP and the GABAA receptor β-subunit by PRIP interference peptide attenuated the insulin potentiation of IGABA. Taken together, these results suggest that PRIP is involved in insulin-induced GABAA receptor insertion by recruiting active Akt to the receptor complex.  相似文献   

9.
Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions.  相似文献   

10.

Background

GABAA receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs [1]. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear [2]. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die [3][6]. As many anaesthetics act via GABAA receptors [7], the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.

Principal Findings

We demonstrate, using RT-PCR, that monocytes express GABAA receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABAA receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABAA receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.

Significance

Our results show that functional GABAA receptors are present on monocytes with properties similar to CNS GABAA receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABAA receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABAA receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem.  相似文献   

11.

Background

GABAA receptors (GABAAR) are composed of several subunits that determine sensitivity to drugs, synaptic localisation and function. Recent studies suggest that agonists targeting selective GABAAR subunits may have therapeutic value against the cognitive impairments observed in schizophrenia. In this study, we determined whether GABAAR binding deficits exist in the dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia and tested if changes in GABAAR binding are related to the changes in subunit mRNAs. The GABA orthosteric and the benzodiazepine allosteric binding sites were assessed autoradiographically using [3H]Muscimol and [3H]Flumazenil, respectively, in a large cohort of individuals with schizophrenia (n = 37) and their matched controls (n = 37). We measured, using qPCR, mRNA of β (β1, β2, β3), γ (γ1, γ2, γ2S for short and γ2L for long isoform, γ3) and δ subunits and used our previous measurements of GABAAR α subunit mRNAs in order to relate mRNAs and binding through correlation and regression analysis.

Results

Significant increases in both [3H]Muscimol (p = 0.016) and [3H]Flumazenil (p = 0.012) binding were found in the DLPFC of schizophrenia patients. Expression levels of mRNA subunits measured did not show any significant difference in schizophrenia compared to controls. Regression analysis revealed that in schizophrenia, the [3H]Muscimol binding variance was most related to α4 mRNA levels and the [3H]Flumazenil binding variance was most related to γ2S subunit mRNA levels. [3H]Muscimol and [3H]Flumazenil binding were not affected by the lifetime anti-psychotics dose (chlorpromazine equivalent).

Conclusions

We report parallel increases in orthosteric and allosteric GABAAR binding sites in the DLPFC in schizophrenia that may be related to a “shift” in subunit composition towards α4 and γ2S respectively, which may compromise normal GABAergic modulation and function. Our results may have implications for the development of treatment strategies that target specific GABAAR receptor subunits.  相似文献   

12.
People with Rett syndrome and mouse models show autonomic dysfunction involving the brain stem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly excited, likely resulting from a defect in neuronal intrinsic membrane properties and a deficiency in GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA receptors (GABAARs) that is located extrasynaptically and mediates tonic inhibition. Here we show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked by GABAAR antagonists. With 10 μm GABA, the bicuculline-sensitive tonic currents were ∼4-fold larger in Mecp2-null LC neurons than in the WT. Single-cell PCR analysis showed that the δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. Expression levels of the δ subunit were ∼50% higher in Mecp2-null neurons than in the WT. Also increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit, α6, by ∼4-fold. The δ subunit-selective agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]]benzamide activated the tonic GABAA currents in LC neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. Consistent with these findings, in vivo application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride alleviated breathing abnormalities of conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in GABAergic synaptic inhibition and allows control of neuronal excitability and breathing abnormalities.  相似文献   

13.
Enhancement of γ-aminobutyric acid type A receptor (GABAAR)-mediated inhibition is a property of most general anesthetics and a candidate for a molecular mechanism of anesthesia. Intravenous anesthetics, including etomidate, propofol, barbiturates, and neuroactive steroids, as well as volatile anesthetics and long-chain alcohols, all enhance GABAAR function at anesthetic concentrations. The implied existence of a receptor site for anesthetics on the GABAAR protein was supported by identification, using photoaffinity labeling, of a binding site for etomidate within the GABAAR transmembrane domain at the β-α subunit interface; the etomidate analog [3H]azietomidate photolabeled in a pharmacologically specific manner two amino acids, α1Met-236 in the M1 helix and βMet-286 in the M3 helix (Li, G. D., Chiara, D. C., Sawyer, G. W., Husain, S. S., Olsen, R. W., and Cohen, J. B. (2006) J. Neurosci. 26, 11599–11605). Here, we use [3H]azietomidate photolabeling of bovine brain GABAARs to determine whether other structural classes of anesthetics interact with the etomidate binding site. Photolabeling was inhibited by anesthetic concentrations of propofol, barbiturates, and the volatile agent isoflurane, at low millimolar concentrations, but not by octanol or ethanol. Inhibition by barbiturates, which was pharmacologically specific and stereospecific, and by propofol was only partial, consistent with allosteric interactions, whereas isoflurane inhibition was nearly complete, apparently competitive. Protein sequencing showed that propofol inhibited to the same extent the photolabeling of α1Met-236 and βMet-286. These results indicate that several classes of general anesthetics modulate etomidate binding to the GABAAR: isoflurane binds directly to the site with millimolar affinity, whereas propofol and barbiturates inhibit binding but do not bind in a mutually exclusive manner with etomidate.  相似文献   

14.
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.  相似文献   

15.
The GABAA receptors are the major inhibitory receptors in the brain and are localized at both synaptic and extrasynaptic membranes. Synaptic GABAA receptors mediate phasic inhibition, whereas extrasynaptic GABAA receptors mediate tonic inhibition. Both phasic and tonic inhibitions regulate neuronal activity, but whether they regulate each other is not very clear. Here, we investigated the functional interaction between synaptic and extrasynaptic GABAA receptors through various molecular manipulations. Overexpression of extrasynaptic α6β3δ-GABAA receptors in mouse hippocampal pyramidal neurons significantly increased tonic currents. Surprisingly, the increase of tonic inhibition was accompanied by a dramatic reduction of the phasic inhibition, suggesting a possible homeostatic regulation of the total inhibition. Overexpressing the α6 subunit alone induced an up-regulation of δ subunit expression and suppressed phasic inhibition similar to overexpressing the α6β3δ subunits. Interestingly, blocking all GABAA receptors after overexpressing α6β3δ receptors could not restore the synaptic GABAergic transmission, suggesting that receptor activation is not required for the homeostatic interplay. Furthermore, insertion of a gephyrin-binding-site (GBS) into the α6 and δ subunits recruited α6GBSβ3δGBS receptors to postsynaptic sites but failed to rescue synaptic GABAergic transmission. Thus, it is not the positional effect of extrasynaptic α6β3δ receptors that causes the down-regulation of phasic inhibition. Overexpressing α5β3γ2 subunits similarly reduced synaptic GABAergic transmission. We propose a working model that both synaptic and extrasynaptic GABAA receptors may compete for limited receptor slots on the plasma membrane to maintain a homeostatic range of the total inhibition.  相似文献   

16.
Gephyrin and collybistin are key components of GABAA receptor (GABAAR) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABAAR subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABAAR α2 and α3 subunit intracellular M3–M4 domain (but not α1, α4, α5, α6, β1–3, or γ1–3) with gephyrin. Curiously, GABAAR α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABAAR α2 also overlap at the start of the gephyrin E domain. This suggests that although GABAAR α3 interacts with gephyrin, GABAAR α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABAAR α2 and collybistin or GABAAR α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABAAR α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABAAR α2 is capable of “activating ” collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABAAR α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABAAR and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABAARs, but not GlyRs or other GABAAR subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABAARs containing the α2 subunit.  相似文献   

17.
Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Hetα1KO) of the human epilepsy gene, the GABAAR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Hetα1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Hetα1KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Hetα1KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Hetα1KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Hetα1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Hetα1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Hetα1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABAARs.  相似文献   

18.
Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB) to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM) suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.  相似文献   

19.
Glucagon-like peptide-1 (GLP-1) is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM), an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC) amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM) plus diazepam (1 μM), only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号