首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed patterns of mandibular genetic and phenotypic morphological integration and the relationship of genealogy to interstrain molecular and morphological differences in ten inbred strains of mice. Positions of mandibular landmarks in two-dimensional space were used to construct a finite element mesh for each individual, then all individuals from the ten strains were compared to the average mandible from a standard strain (SEA/GnJ). Measures of size and shape associated with finite element scaling analysis were then used in a quantitative genetic analysis of mandibular variation. Significant genetic variation for mandibular size and shape was uncovered. Patterns of both genetic and phenotypic correlation for measures of landmark-specific sizes were consistent with models of morphological integration based on the developmental origin of parts of the mandible and on the effects of muscle attachment on mandibular morphology. Shape differences local to particular landmarks did not show these forms of morphological integration. Although interstrain distances based on local shape magnitudes were significantly correlated with genealogical relationship, distances based on local size differences were not. Even higher than the correlation of genealogy with distances based on local shape magnitude was the genealogical-molecular distance correlation. Patterns of morphometric mandibular variation corresponded to expected effects of epigenetic developmental processes. Also, when detailed shape differences were considered, morphology served as a rough guide to genealogy, although molecular distances showed a stronger relationship.  相似文献   

2.
The mammalian mandible is a developmentally modular but functionally integrated system. Whether morphological integration can evolve to match the optimal pattern of functional integration may depend on the developmental origin of integration, specifically, on the role that direct epigenetic interactions play in shaping integration. These interactions are hypothesized to integrate modules and also to be highly conservative, potentially constraining the evolution of integration. Using the fox squirrel (Sciurus niger) mandible as a model system, we test five a priori developmental hypotheses that predict mandibular integration and we also explore for correlations between shapes of mandibular regions not anticipated by any of the developmental models. To determine whether direct epigenetic interactions are highly conserved in rodents, we examine the correlation structure of fluctuating asymmetry, and compare integration patterns between fox squirrels and prairie deer mice (Peromyscus maniculatus bairdii). In fox squirrels, we find a correlation structure unanticipated by all a priori developmental models: adjacent parts along the proximodistal jaw axis are correlated whereas more distant ones are not. The most notable exception is that the shape of the anterior incisor alveolus is correlated with the shape of the ramus (FA component) or coronoid (symmetric component). Those exceptions differ between species; in prairie deer mice, the molar alveolus is connected to more parts, and the incisor alveolus to fewer, than in fox squirrels. The structure of integration suggests that the mandible cannot be decomposed into parts but rather is a single connected unit, a result consistent with its functional integration. That match between functional and developmental integration may arise, at least in part, from function-induced growth, building developmental integration into the functional system and enabling direct epigenetic interactions to evolve when function does.  相似文献   

3.
4.
SUMMARY Morphological integration corresponds to interdependency between characters that can arise from several causes. Proximal causes of integration include that different phenotypic features may share common genetic sets and/or interact during their development. Ultimate causes may be the prolonged effect of selection favoring integration of functionally interacting characters, achieved by the molding of these proximal causes. Strong and direct interactions among successive teeth of a molar row are predicted by genetic and developmental evidences. Functional constraints related to occlusion, however, should have selected more strongly for a morphological integration of occluding teeth and a corresponding evolution of the underlying developmental and genetic pathways. To investigate how these predictions match the patterns of phenotypic integration, we studied the co‐variation among the six molars of the murine molar row, focusing on two populations of house mice (Mus musculus domesticus) and wood mice (Apodemus sylvaticus). The size and shape of the three upper and lower molars were quantified and compared. Our results evidenced similar patterns in both species, size being more integrated than shape among all the teeth, and both size and shape co‐varying strongly between adjacent teeth, but also between occluding teeth. Strong co‐variation within each molar row is in agreement with developmental models showing a cascade influence of the first molar on the subsequent molars. In contrast, the strong co‐variation between molars of the occluding tooth rows confirms that functional constraints molded patterns of integration and probably the underlying developmental pathways despite the low level of direct developmental interactions occurring among molar rows. These patterns of co‐variation are furthermore conserved between the house mouse and the wood mouse that diverged >10 Ma, suggesting that they may constitute long‐running constraints to the diversification of the murine rodent dentition.  相似文献   

5.
The rodent mandible has become a paradigm for studies on the development and evolution of complex morphological structures. We use a combination of geometric and multivariate morphometric methods in order to assess the correspondence between integration patterns and a priori biological models in the context of evolutionary shape divergence in the mandible of rodents of the family Echimyidae. The correlation of shape distances among operational taxonomic units (individuals, species, genera) in separate morphogenetic components allowed the construction of integration matrices among mandible components for data sets corresponding to varying levels of genetic divergence (intergeneric, interspecific, and intrapopulational). The integration matrices were associated with a priori biological (developmental, genetical, modular) models, and the maximum integration axes (singular warps) were compared with realized axes of maximum interspecific variation (relative warps). The integration pattern and intensity were not stable in data sets with different levels of genetic divergence, and the varying functional demands during the ecological radiation in the family were probably responsible for the differences in observed integration patterns. Developmental and genetic models were significantly associated with the interspecific integration patterns observed, suggesting a role for neutral evolution during the evolutionary divergence of mandible shape. However, directional and stabilizing selection were not discarded as processes responsible for the generation of interspecific integration. The choreography of the morphogenetic components in the mandible is highly flexible and the integrated groups of components can be reorganized depending on functional demands during evolutionary shape changes.  相似文献   

6.
A Danish anthropological collection of medieval human skeletons excavated in 1986 involves a mandible (No. 212) from an adult female born without the lower alveolar nerve and mandibular canal. It is believed that the defect has resulted in lack of tooth development on the affected side and that the mylohyoid nerve has partially compensated for this defect by development of teeth in localized areas. The defective mandibular dentition has caused a compensatory development of the alveolar process in the maxilla. The missing occlusal support has altered muscular traction on the mandible. This has caused an alteration in mandibular shape. Whether the asymmetric development of the mandible is caused by muscular dysfunction, by failure in angular growth apposition, or by a combination of these factors is discussed. The case presents valuable data in the ongoing discussion about the interaction between nerve tissue and tooth formation and about the interaction between occlusion, jaw morphology, and muscular traction. The study shows how archeological material in an interdisciplinary cooperation between archeological, embryological and orthodontic research can contribute to the clarification of current biological problems.  相似文献   

7.
Complex phenotypes could be interpreted as the result of functional integration between identifiable subunits. Common developmental or ecological factors may favour macroevolutionary morphological integration so that functional subunits also covary above the species level. We investigate shape variation and functional integration in two subunits of the mammalian mandible: the corpus and the ramus in a subset of extant terrestrial Carnivora using geometric morphometric and comparative methods. More specifically, we test if corpus and ramus shape exhibit similar degree of homoplasy and if these traits covary above species level. Additionally, broad functional categorisations (predaceous and non predaceous) are investigated to test if differences in morphological variation and integration at macroevolutionary scale occur. Principal components of shape data show a significant phylogenetic signal in both mandibular subunits, with the ramus exhibiting a higher degree of homoplasy than the corpus. Functional groups (predators and non-predators) are significantly distinct in corpus shape, while in the ramus significance emerges only after removing the phylogenetic signal. Partial Least Square shows that mandibular corpus and ramus region covaries above species level even if this trend is not supported when employing comparative methods. Only in a subset of predaceous species covariation still hold. We conclude that mandibular subunits of Carnivora differ considerably in shape among predaceous and non-predaceous species because of the adaptive selection pressure imposed by catching and hold of live prey. This selective process also favoured macroevolutionary integration in predaceous carnivorans.  相似文献   

8.
Plasticity of tooth shape in mammals is of great adaptive value for the efficient exploitation of specific feeding niches and is a crucial mechanism for ecological diversification. In this study, we aimed to infer chewing effectiveness from the functional shape of different postcanine teeth within bovids, the most diverse extant group of large herbivorous mammals. We consider the postcanine dentition as a masticatory unit and test for differences related to food biomechanical properties, dietary abrasiveness, and chewing dynamics. We compare functional properties of the postcanine tooth row among species with well‐known dietary strategies by integrating digitalization of high‐resolution occlusal surface 3D‐models of upper postcanine dentitions and quantification of the indentation index (D), a structural parameter representing enamel complexity. We test for differences in the occlusal shape among tooth positions in the postcanine dentition using robust, heteroscedastic tests in a one‐way analysis of variance. Our results show three distinct patterns of enamel complexity along the tooth row: (1) D is more homogeneously distributed among tooth positions; (2) D increases gradually in the mesiodistal axis along the tooth row; and (3) D increases abruptly only at the transition between premolars and molars. We interpreted these patterns as different adaptive configurations of the postcanine tooth row relating to diet. Grass‐ and fruit‐eating bovids show the same abrupt increase in enamel complexity at the transition from premolars to molars. Intermediate feeding and leaf‐browsing species show the same gradual, mesiodistal increase in complexity along the tooth row. The absolute physical dietary resistance (biomechanical properties plus abrasiveness) and its relation to mechanical constraints of the chewing stroke are the likely selective factors leading to convergence of enamel complexity patterns along the tooth row among taxa with different diets. J. Morphol. 275:328–341, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Mandibles and teeth of ungulates have been extensively studied to discern the functional significance of their design. Grazing ungulates have deeper mandibles, longer coronoid processes, flatter incisor arcades, and more hypsodont molars in comparison to browsers. If the functional significance of both mandible and teeth shapes is well‐established, it remains uncertain to what extent mandible shapes are really adapted to grazing, meaning that they evolved either to serve their current biological function or just as a structural requirement to accommodate higher crowned molars. Here, we address this question by studying the contribution of phylogeny, hypsodonty, and body size to mandibular shape variation. The mandible shape appeared to be significantly influenced by hypsodonty but not by body size. Interestingly, hypsodonty‐related changes influenced the tooth row in artiodactyls and perissodactyls significantly but in the opposite directions, which is ultimately related to their different digestive strategies. Yet, we obtained a strong phylogenetic effect in perissodactyls, suggesting that their mandible shape should be strongly inherited. The strength of this effect was not significant within artiodactyls (where hypsodonty explained much more variance in mandible shape). Digestive strategy is deemed to interplay with hypsodonty to produce different paths of adaptation to particular diets in ungulates.  相似文献   

10.
Cultural reshaping (artificial deformation or modification) of the neurocranial vault provides an artificially increased range of morphological variability within which the relationship between the growing neurocranium and face can be investigated. We analyze crania which have been fronto-occipitally compressed to ascertain possible morphological effects on the mandible. We collected measures of mandibular breadth, length, and height from 82 modified (N = 48) and unmodified (N = 34) crania from a Peruvian Ancon series. Angle classification was also scored in order to investigate whether or not occlusal relationships were affected by neurocranial reshaping. Only intercondylar distance (posterior mandibular breadth) exhibited significant differences between unmodified and modified groups, though this difference was relatively small compared with vault deformation. The modified crania had a higher frequency of normal occlusion (Class I) than the unmodified crania. Increased intercondylar breadth in modified skulls is due to a cascade of effects which begin with a direct effect of the fronto-occipital deforming device on neurocranial shape (increased neurocranial width). The increase in mandibular breadth may be a compensatory response to increased cranial base breadth and maintains articulation between the cranial base and mandible. The increased posterior breadth, coupled with a slight decrease in mandibular depth, may contribute to the change in occlusal relationships suggested for this sample.  相似文献   

11.
The possibility that projecting maxillary canines interfere with either a «rotary chewing» form of molar occlusion or the lateral excursion of the mandible has been used to suggest two dietary (non-weapon) selection models for canine reduction in the earliest male humans. A third model explaining canine reduction is based on the idea that a projecting mandibular canine could interfere with its tip-to-tip occlusion with the maxillary lateral incisor. In this paper, these three mechanical models are critically reexamined in light of more recent studies of occlusion in extant primates, detailed observations of anterior tooth morphology and wear in Miocene to Recent anthropoids, cheek tooth microwear inA. afarensis, and the currently accepted phylogeny and fossil record of the great apes and man.  相似文献   

12.
Examination of historical persistence of integration patterns provides an important insight into understanding the origin and evolution of complex traits. Specifically, the distinct effects of developmental and functional integration on the evolution of complex traits are often overlooked. Because patterns of functional integration are commonly shaped by selection exerted by the external environment, whereas patterns of developmental integration can be determined by relatively environment-independent selection for developmental homeostasis, examination of historical persistence of morphological integration patterns among species should reveal the relative importance of current selection in the evolution of complex traits. We compared historical persistence of integration patterns produced by current developmental versus ecological requirements by examining the evolution of complex mandibular structures in nine species of soricid shrews. We found that, irrespective of phylogenetic relatedness of species, patterns of developmental and functional integration were highly concordant, suggesting that strong selection for developmental homeostasis favors concordant channeling of both internal and external variation. Overall, our results suggest that divergence in mandible shape among species closely follows variation in functional demands and ecological requirements regardless of phylogenetic relatedness among species.  相似文献   

13.
The evolution of robust jaws, hypsodont teeth, and large chewing muscles among grazing ruminants is a quintessential example of putative morphological adaptation. However, the degree of correlated evolution (i.e., to what extent the grazer feeding apparatus represents an evolutionary module), especially of soft and hard tissues, remains poorly understood. Recent generation of large datasets and phylogenetic information has made testing hypotheses of correlated evolution possible. We, therefore, test for correlated evolution among various traits of the ruminant masticatory apparatus including tooth crown height, jaw robustness, chewing muscle size, and characters of the molar occlusal surfaces, using phylogenetic and nonphylogenetic comparative methods as well as phylogenetic evolutionary model selection. We find that the large masseter muscles of grazing ruminants evolved with the inclusion of grass in the diet, an increase in the proportion of occlusal enamel bands oriented parallel to the chewing stroke, and possibly hypsodonty. We suggest that the masseter evolved under two evolutionary regimes: i) selection for higher masticatory forces during chewing and ii) flattening of the tooth profile, which resulted in reduced tooth guidance and, thus, a requirement for more chewing muscle activity during each chewing stroke, in agreement with previous research. The linear jaw metrics (depth of the mandibular angle, mandibular angle width, and length of the superficial masseteric scar) all show correlated evolution with hypsodonty and the proportion of enamel bands oriented parallel to the chewing stroke. We suggest that changes in the shape of the mandible represent the combined effects of selection for a reorientation of the chewing stroke, so as to emphasize horizontal translation of the teeth, and accommodation of high‐crowned teeth. Our analyses show that the ruminant feeding apparatus is an evolutionary mosaic with its various components showing both correlated and independent evolution. J. Morphol. 275:1093–1102, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The evolutionary integration of complex morphological structures is a macroevolutionary pattern in which morphogenetic components evolve in a coordinated fashion, which can result from the interplay among processes of developmental, genetic integration, and different types of selection. We tested hypotheses of ecological versus developmental factors underlying patterns of within‐species and evolutionary integration in the mandible of phyllostomid bats, during the most impressive ecological and morphological radiation among mammals. Shape variation of mandibular morphogenetic components was associated with diet, and the transition of integration patterns from developmental to within‐species to evolutionary was examined. Within‐species (as a proxy to genetic) integration in different lineages resembled developmental integration regardless of diet specialization, however, evolutionary integration patterns reflected selection in different mandibular components. For dietary specializations requiring extensive functional changes in mastication patterns or biting, such as frugivores and sanguivores, the evolutionary integration pattern was not associated with expected within‐species or developmental integration. On the other hand, specializations with lower mastication demands or without major functional reorganization (such as nectarivores and carnivores), presented evolutionary integration patterns similar to the expected developmental pattern. These results show that evolutionary integration patterns are largely a result of independent selection on specific components regardless of developmental modules.  相似文献   

15.
The interaction between the two main competing geometric determinants of teeth (the geometry of function and the geometry of occlusion) were investigated through the construction of three-dimensional spatial models of several mammalian tooth forms (carnassial, insectivore premolar, zalambdodont, dilambdodont, and tribosphenic). These models aim to emulate the shape and function of mammalian teeth. The geometric principles of occlusion relating to single- and double-crested teeth are reviewed. Function was considered using engineering principles that relate tooth shape to function. Substantial similarity between the models and mammalian teeth were achieved. Differences between the two indicate the influence of tooth strength, geometric relations between upper and lower teeth (including the presence of the protocone), and wear on tooth morphology. The concept of "autocclusion" is expanded to include any morphological features that ensure proper alignment of cusps on the same tooth and other teeth in the tooth row. It is concluded that the tooth forms examined are auto-aligning, and do not require additional morphological guides for correct alignment. The model of therian molars constructed by Crompton and Sita-Lumsden ([1970] Nature 227:197-199) is reconstructed in 3D space to show that their hypothesis of crest geometry is erroneous, and that their model is a special case of a more general class of models.  相似文献   

16.
Static adult intraspecific allometry of jaws and teeth was investigated in a sample of 100 Negro crania. The relations between tooth area, postcanine surface, incisor surface, and four viscerocranial measures were examined separately for males and females. Our results indicate a marked lack of morphological integration between P-sets within the orofacial subregion and a similar lack of correspondence between jaw size and tooth size. Allometric analyses indicate that mandibular length scales negatively allometric to maxilloalveolar length and to bigonial width, that canine base area scales positively to upper and lower jaw length, and that all the other teeth scale negatively to jaw length. The postcanine surface area was found to be negatively allometric to the canine base area, which in turn scaled isometrically to incisor surface. Hence, any lengthening of the mandible will tend to be associated with a relative shortening of the maxilla, with relatively larger canines and a relative reduction of the cheek teeth.  相似文献   

17.
18.
In this paper, we introduce a Bayesian statistical model for the analysis of functional data observed at several time points. Examples of such data include the Michigan growth study where we wish to characterize the shape changes of human mandible profiles. The form of the mandible is often used by clinicians as an aid in predicting the mandibular growth. However, whereas many studies have demonstrated the changes in size that may occur during the period of pubertal growth spurt, shape changes have been less well investigated. Considering a group of subjects presenting normal occlusion, in this paper we thus describe a Bayesian functional ANOVA model that provides information about where and when the shape changes of the mandible occur during different stages of development. The model is developed by defining the notion of predictive process models for Gaussian process (GP) distributions used as priors over the random functional effects. We show that the predictive approach is computationally appealing and that it is useful to analyze multivariate functional data with unequally spaced observations that differ among subjects and times. Graphical posterior summaries show that our model is able to provide a biological interpretation of the morphometric findings and that they comprehensively describe the shape changes of the human mandible profiles. Compared with classical cephalometric analysis, this paper represents a significant methodological advance for the study of mandibular shape changes in two dimensions.  相似文献   

19.
Ants use their mandibles for a wide variety of tasks related to substrate manipulation, brood transport, food processing, and colony defense. Due to constraints involved in colony upkeep, ants evolved a remarkable diversity of mandibular forms, often related to specific roles such as specialized hunting and seed milling. Considering these varied functional demands, we focused on understanding how the mandible and head shape vary within and between Pheidole subcastes. Using x‐ray microtomography and 3D geometric morphometrics, we tested whether these structures are integrated and modular, and how ecological predictors influenced these features. Our results showed that mandible and head shape of majors and minor workers tend to vary from robust to slender, with some more complex changes related to the mandibular base. Additionally, we found that head and mandible shapes are characterized by a high degree of integration, but with little correlation with feeding and nesting habits. Our results suggest that a combination of structural (allometric) constraints and the behavioral flexibility conferred by subcaste dimorphism might largely buffer selective pressures that would otherwise lead to a fine‐tuning between ecological conditions and morphological adaptation.  相似文献   

20.
Intra-arcadal mesiodistal and buccolingual tooth size correlations were evaluated in a sample of 125 caucasoids with ideal occlusion. Dental dimensions were corrected for arcade mength (as a measure of jaw size) by a series of regression analyses of each mesiodistal dimension on the sum of the mesiodistal dimensions within each arcade. Regression coefficients of tooth dimension on arcade length were calculated to gain an insight into the dimensional sensitivity of individual teeth to arcade length variation. The data presented here suggest a strong association between arcadal length (jaw size) dependence, and the dimensional stability of individual teeth. When corrected for arcade length, a definite pattern of tooth size correlation emerges: postcanine maxillary and mandibular teeth are negatively correlated to the anterior teeth and are positively correlated to one another. The hypothesis is developed that anterior and postcanine teeth should be viewed as two separate and negatively size-correlated units, beyond the boundaries of the four morphological tooth classes. Recognition of this basic dichotomous size arrangement within each jaw allows for a reassessment of some of the problems associated with hominid dental evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号