首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intratumoral heterogeneity of breast cancer remains a major challenge in successful treatment. Failure of cancer therapies can also be accredited to inability to systemically eradicate cancer stem cells (CSCs). Recent evidence points to the role of epithelial-mesenchymal transition (EMT) in expanding the pool of tumor cells with CSCs features. Thus, we assessed expression level as well as heterogeneity of CSCs markers in primary tumors (PT), lymph node metastasis (LNM), and circulating tumor cells (CTCs)–enriched blood fractions in order to correlate them with signs of EMT activation as well as clinicopathological data of breast cancer patients. Level of CSCs markers (ALDH1, CD44, CD133, OCT-4, NANOG) and EMT markers was quantified in PT (N=107), LNM (N=56), and CTCs-enriched blood fractions (N=85). Heterogeneity of CSCs markers expression within each PT and LNM was assessed by calculating Gini Index. Percentage of ALDH1-positive cells was elevated in PT in comparison to LNM (P = .005). However, heterogeneity of the four CSCs markers: ALDH1 (P = .019), CD133 (P = .009), OCT-4 (P = .027), and CD44 (P < .001) was decreased in LNM. Samples classified as mesenchymal (post-EMT) showed elevated expression of CSCs markers (OCT-4 and CD44 in PT; OCT-4 in LNM; ALDH1, OCT-4, NANOG, CD44 in CTCs). Patients with mesenchymal-like CTCs had worse prognosis than patients with epithelial-like or no CTCs (P = .0025). CSCs markers are enriched in PT, LNM, and CTCs with mesenchymal features, but their heterogeneity is decreased in metastatic lymph nodes. Mesenchymal CTCs phenotype correlates with poor prognosis of the patients.  相似文献   

2.
Mechanisms of invasion in glioblastoma (GBM) relate to differential expression of proteins conferring increased motility and penetration of the extracellular matrix. CD97 is a member of the epidermal growth factor seven-span transmembrane family of adhesion G-protein coupled receptors. These proteins facilitate mobility of leukocytes into tissue. In this study we show that CD97 is expressed in glioma, has functional effects on invasion, and is associated with poor overall survival. Glioma cell lines and low passage primary cultures were analyzed. Functional significance was assessed by transient knockdown using siRNA targeting CD97 or a non-target control sequence. Invasion was assessed 48 hours after siRNA-mediated knockdown using a Matrigel-coated invasion chamber. Migration was quantified using a scratch assay over 12 hours. Proliferation was measured 24 and 48 hours after confirmed protein knockdown. GBM cell lines and primary cultures were found to express CD97. Knockdown of CD97 decreased invasion and migration in GBM cell lines, with no difference in proliferation. Gene-expression based Kaplan-Meier analysis was performed using The Cancer Genome Atlas, demonstrating an inverse relationship between CD97 expression and survival. GBMs expressing high levels of CD97 were associated with decreased survival compared to those with low CD97 (p = 0.007). CD97 promotes invasion and migration in GBM, but has no effect on tumor proliferation. This phenotype may explain the discrepancy in survival between high and low CD97-expressing tumors. This data provides impetus for further studies to determine its viability as a therapeutic target in the treatment of GBM.  相似文献   

3.
CD8 T cells play a critical role in control of chronic viral infections; however, the role of these cells in containing persistent bacterial infections, such as those caused by Mycobacterium tuberculosis (Mtb), is less clear. We assessed the phenotype and functional capacity of CD8 T cells specific for the immunodominant Mtb antigens CFP-10 and ESAT-6, in patients with pulmonary tuberculosis (TB) disease, before and after treatment, and in healthy persons with latent Mtb infection (LTBI). In patients with TB disease, CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells had an activated, pro-apoptotic phenotype, with lower Bcl-2 and CD127 expression, and higher Ki67, CD57, and CD95 expression, than in LTBI. When CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells were detectable, expression of distinct combinations of these markers was highly sensitive and specific for differentiating TB disease from LTBI. Successful treatment of disease resulted in changes of these markers, but not in restoration of CFP-10/ESAT-6-specific CD8 or CD4 memory T cell proliferative capacity. These data suggest that high mycobacterial load in active TB disease is associated with activated, short-lived CFP-10/ESAT-6-specific CD8 T cells with impaired functional capacity that is not restored following treatment. By contrast, LTBI is associated with preservation of long-lived CFP-10/ESAT-6-specific memory CD8 T cells that maintain high Bcl-2 expression and which may readily proliferate.  相似文献   

4.

Background

Regulatory T cell (Treg) based immunotherapy is a potential treatment for several immune disorders. By now, this approach proved successful in preclinical animal transplantation and auto-immunity models. In these models the success of Treg based immunotherapy crucially depends on the antigen-specificity of the infused Treg population. For the human setting, information is lacking on how to generate Treg with direct antigen-specificity ex vivo to be used for immunotherapy.

Methodology/Principal Findings

Here, we demonstrate that in as little as two stimulation cycles with HLA mismatched allogeneic stimulator cells and T cell growth factors a very high degree of alloantigen-specificity was reached in magnetic bead isolated human CD4posCD25high Treg. Efficient increases in cell numbers were obtained. Primary allogeneic stimulation appeared a prerequisite in the generation of alloantigen-specific Treg, while secondary allogeneic or polyclonal stimulation with anti-CD3 plus anti-CD28 monoclonal antibodies enriched alloantigen-specificity and cell yield to a similar extent.

Conclusions/Significance

The ex vivo expansion protocol that we describe will very likely increase the success of clinical Treg-based immunotherapy, and will help to induce tolerance to selected antigens, while minimizing general immune suppression. This approach is of particular interest for recipients of HLA mismatched transplants.  相似文献   

5.

Background

The immunopathogenic mechanisms leading to psoriasis remain unresolved. CD57 is a marker of replicative inability and immunosenescence on CD8+ T cells and the proportion of CD57 expressing CD8+ T cells is increased in a number of inflammatory conditions.

Methodology

We examined the expression of CD57 on T cells in the skin of patients affected with psoriasis, comparing lesional and unaffected skin. We also assessed functionality of the T cells by evaluating the secretion of several inflammatory cytokines (IL-17A, IFN-gamma, IL-2, IL-33, TNF-alpha, IL-21, IL-22, and IL-27), from cell-sorted purified CD4+ and CD8+ T cells isolated from lesional and unaffected skin biopsies of psoriasis patients.

Principal Findings

We observed that the frequency of CD57+CD4+ and CD57+CD8+ T cells was significantly higher in unaffected skin of psoriasis patients compared to lesional skin. Sorted CD4+ T cells from psoriatic lesional skin produced higher levels of IL-17A, IL-22, and IFN-gamma compared to unaffected skin, while sorted CD8+ T cells from lesional skin produced higher levels of IL-17, IL-22, IFN-gamma, TNF-alpha, and IL-2 compared to unaffected skin.

Conclusions/Significance

These findings suggest that T cells in unaffected skin from psoriasis patients exhibit a phenotype compatible with replicative inability. As they have a lower replicative capacity, CD57+ T cells are less frequent in lesional tissue due to the high cellular turnover.  相似文献   

6.
Neuroblastoma (NB) is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2)) or MYCN-non-amplified (SK-N-SH and SK-N-FI) cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2) and SK-N-DZ. Moreover, SK-N-BE(2) spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.  相似文献   

7.

Rationale

Natural killer cells, as a major source of interferon-γ, contribute to the amplification of the inflammatory response as well as to mortality during severe sepsis in animal models.

Objective

We studied the phenotype and functions of circulating NK cells in critically-ill septic patients.

Methods

Blood samples were taken <48 hours after admission from 42 ICU patients with severe sepsis (n = 15) or septic shock (n = 14) (Sepsis group), non-septic SIRS (n = 13) (SIRS group), as well as 21 healthy controls. The immuno-phenotype and functions of NK cells were studied by flow cytometry.

Results

The absolute number of peripheral blood CD3–CD56+ NK cells was similarly reduced in all groups of ICU patients, but with a normal percentage of NK cells. When NK cell cytotoxicity was evaluated with degranulation assays (CD107 expression), no difference was observed between Sepsis patients and healthy controls. Under antibody-dependent cell cytotoxicity (ADCC) conditions, SIRS patients exhibited increased CD107 surface expression on NK cells (62.9[61.3–70]%) compared to healthy controls (43.5[32.1–53.1]%) or Sepsis patients (49.2[37.3–62.9]%) (p = 0.002). Compared to healthy (10.2[6.3–13.1]%), reduced interferon-γ production by NK cells (K562 stimulation) was observed in Sepsis group (6.2[2.2–9.9]%, p<0.01), and especially in patients with septic shock. Conversely, SIRS patients exhibited increased interferon-γ production (42.9[30.1–54.7]%) compared to Sepsis patients (18.4[11.7–35.7]%, p<0.01) or healthy controls (26.8[19.3–44.9]%, p = 0.09) in ADCC condition.

Conclusions

Extensive monitoring of the NK-cell phenotype and function in critically-ill septic patients revealed early decreased NK-cell function with impaired interferon-γ production. These results may aid future NK-based immuno-interventions.

Trial Registration

NTC00699868.  相似文献   

8.
9.
宫颈癌患者外周血CD4+CD25+high调节性T细胞的表达及意义   总被引:1,自引:0,他引:1  
目的:探讨宫颈癌患者外周血中CD4~ CD25~( high)调节性T(regulator T cells,Tr)的表达及意义。方法:采用流式细胞术检测52例宫颈癌患者,35例健康女性外周血中CD4~ CD25~( high)Tr、细胞毒性T细胞(cytotoxic T lymphocytes,CTL)和NK细胞,采用ELISA检测血清中-干扰素(interferon,IFN-)的表达水平。结果:宫颈癌患者外周血CD4~ CD25~( high)Tr占CD4~ T淋巴细胞的百分比为(7.18±2.32)%,高于健康女性组(P<0.05);宫颈癌患者外周血CD4~ CD25~( high)Tr水平与CTL、NK细胞及IFN-水平呈负相关。结论:宫颈癌患者外周血中具免疫抑制活性的CD4~ CD25~( high)Tr水平较高,参与宫颈癌患者的肿瘤免疫抑制。  相似文献   

10.

Background

Disseminated tumor cells (DTCs) in the bone marrow may exist in a dormant state for extended periods of time, maintaining the ability to proliferate upon activation, engraft at new sites, and form detectable metastases. However, understanding of the behavior and biology of dormant breast cancer cells in the bone marrow niche remains limited, as well as their potential involvement in tumor recurrence and metastasis. Therefore, the purpose of this study was to investigate the tumorigenicity and metastatic potential of dormant disseminated breast cancer cells (prior to activation) in the bone marrow.

Methodology/Principal Findings

Total bone marrow, isolated from mice previously injected with tumorspheres into the mammary fat pad, was injected into the mammary fat pad of NUDE mice. As a negative control, bone marrow isolated from non-injected mice was injected into the mammary fat pad of NUDE mice. The resultant tumors were analyzed by immunohistochemistry for expression of epithelial and mesenchymal markers. Mouse lungs, livers, and kidneys were analyzed by H+E staining to detect metastases. The injection of bone marrow isolated from mice previously injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post-injection. However, the injection of bone marrow isolated from non-injected mice did not result in tumor formation in the mammary fat pad. The DTC-derived tumors exhibited accelerated development of metastatic lesions within the lung, liver and kidney. The resultant tumors and the majority of metastatic lesions within the lung and liver exhibited a mesenchymal-like phenotype.

Conclusions/Significance

Dormant DTCs within the bone marrow are highly malignant upon injection into the mammary fat pad, with the accelerated development of metastatic lesions within the lung, liver and kidney. These results suggest the acquisition of a more aggressive phenotype of DTCs during metastatic latency within the bone marrow microenvironment.  相似文献   

11.
12.
13.
Dibutyryl cyclic AMP and butyrate inhibited growth of S-20 (cholinergic) and NIE-115 (adrenergic) neuroblastoma clones. Both these drugs resulted in a parallel increase of choline acetyltransferase and ATP-citrate lyase activities in S-20 neuroblastoma cells. On the other hand, the increase in tyrosine hydroxylase activity in NIE-115 caused by these drugs was not accompanied by a significant change in ATP-citrate lyase activity. Both dibutyryl cyclic AMP and butyrate caused a decrease in fatty acid synthetase activity in both cell lines. The activities of pyruvate dehydrogenase, citrate synthase, choline acetyltransferase, and lactate dehydrogenase in both S-20 and NIE-115 cells were not significantly influenced by the drugs. ATP-citrate lyases from S-20 and NIE-115 had similar kinetic and immunological properties, and their subunits had the same molecular weight as the rat liver enzyme. These data indicate that the differential regulation of ATP-citrate lyase activity in cholinergic and adrenergic cells does not result from the existence of different molecular forms of the enzyme in these cell lines. They also provide further evidence to support the hypothesis that ATP-citrate lyase activity increases during maturation of normal cholinergic neurons and decreases in noncholinergic cells of the brain.  相似文献   

14.
Spontaneous hybridization in ex situ facilities can undermine the genetic integrity of ex situ collections and potentially contaminate open-pollinated seeds or seedlings destined for the reintroduction of endangered plant species into the wild. In the present study, the potential risk of hybridization between two endangered Chinese endemic species, namely Sinojackia xylocarpa Hu and S. rehderiana Hu, which are naturally allopatric species but were conserved ex situ in Wuhan Botanical Garden (WBG), Wuhan, China, were investigated over three consecutive years from 2003 to 2005. The entire overlapping flowering period of the two species was 14-20 d and the two species shared the same pollinator insects during the entire flowering season in WBG. The floral isolation between the two species was not an issue in the ex sltu collection at WBG. The results suggest an opportunity for pollen transfer between species and a potential risk of genetic Introgression and loss of genetic identity of open-pollinated seeds produced in the ex sltu Collection of these two endangered species. An artificial reciprocal cross between S xylocarpa and S. rehderlana confirmed that the two congener species could readily set seeds, indicating no post-pollination barriers to hybridization and the importance of spatial isolation as a barrier to inter-specific crossing. Therefore, to manage these crossable species with overlapping flowering times and shared pollination vectors in ex situ facilities, spatial isolation should be carefully considered to minimize the possibility of spontaneous hybridization.  相似文献   

15.
16.
Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.  相似文献   

17.
Plasma membrane-associated sialidase (Neu 3), which specifically hydrolyzes gangliosides, is relatively abundantly present in the nervous system. To understand the role of Neu 3 in neuronal differentiation, we studied the relationship between neurite outgrowth and Neu 3 expression in human neuroblastoma NB-1 cells. The expression of Neu 3 in NB-1 cells increased when neurite outgrowth in these cells was induced by dibutyryl cAMP. While treatment with dibutyryl cAMP alone enhanced the outgrowth of dendrite-like processes, transfection of the Neu 3 gave rise to a more prominent outgrowth of neurites with axon-like characteristics, even in the absence of dibutyryl cAMP. Neu 3 induction by dibutyryl cAMP is probably attributable, in part, to transactivation of the Neu 3 gene through cAMP responsive elements in the 5-upstream region, as revealed by the promotor activity assay using Neu 3 promotor expression plasmid. These results indicate that Neu 3 regulates neurite formation in NB-1 cells, and suggest that this effect may be enhanced by dibutyryl cAMP via a cAMP-dependent pathway.  相似文献   

18.
19.
The measured ratio of xanthine oxidase activity to the total activity of xanthine oxidase and dehydrogenase showed higher values in intact cells than when similar cells were homogenized. The total activity was the same for both systems. The xanthine oxidase ratio was 90, 60, 50, 50, 60% in V79, RIF/Ha3, SCC7, KHT intact cells and freshly extracted murine peritoneal macrophages respectively while the corresponding ratios measured were 25, 40, 38, 35, 22% when the cells were lysed by homogenization. Superoxide radical 02 production by addition of xanthine to intact or homogenized cells to activate intracellular xanthine oxidase was higher in intact than homogenized cells. Homogenization of cells and tissues in the presence of dithioerythritol (DTE) can evidently lead to a considerable under-estimation of the xanthine oxidase ratio. The effect of hypoxia on cells has also been examined.  相似文献   

20.

Background

Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1), recruits immature myeloid-derived cells and enhances early tumor progression.

Methodology/Principal Findings

CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b+Gr1+ myeloid-derived cells at tumor sites in mice and promoted CD31+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b+Gr1highF4/80 cells (∼90%) with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b+Gr1+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation.

Conclusions/Significance

These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号