首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Bacterial contribution to oral disease has been studied in young children, but there is a lack of data addressing the developmental perspective in edentulous infants. Our primary objectives were to use pyrosequencing to phylogenetically characterize the salivary bacterial microbiome of edentulous infants and to make comparisons against their mothers. Saliva samples were collected from 5 edentulous infants (mean age?=?4.6±1.2 mo old) and their mothers or primary care givers (mean age?=?30.8±9.5 y old). Salivary DNA was extracted, used to generate DNA amplicons of the V4-V6 hypervariable region of the bacterial 16S rDNA gene, and subjected to 454-pyrosequencing. On average, over 80,000 sequences per sample were generated. High bacterial diversity was noted in the saliva of adults [1012 operational taxonomical units (OTU) at 3% divergence] and infants (578 OTU at 3% divergence). Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria were predominant bacterial phyla present in all samples. A total of 397 bacterial genera were present in our dataset. Of the 28 genera different (P<0.05) between infants and adults, 27 had a greater prevalence in adults. The exception was Streptococcus, which was the predominant genera in infant saliva (62.2% in infants vs. 20.4% in adults; P<0.05). Veillonella, Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Leptotrichia, and Fusobacterium were also predominant genera in infant samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium, Oribacterium, Rothia, Treponema, and Actinomyces were predominant in adults. Our data demonstrate that although the adult saliva bacterial microbiome had a greater OTU count than infants, a rich bacterial community exists in the infant oral cavity prior to tooth eruption. Streptococcus, Veillonella, and Neisseria are the predominant bacterial genera present in infants. Further research is required to characterize the development of oral microbiota early in life and identify environmental factors that impact colonization and oral and gastrointestinal disease risk.  相似文献   

2.
3.
《当今生物学》2018,48(1):62-68
Biomimetic approaches for the dental plaque control Tooth and gum diseases are widespread and are primarily based on the presence of bacterial biofilms. The characterization of biofilms can be carried out by means of state‐of‐the‐art microbiome analysis that can provide information on bacterial composition and diversity. Modern oral care products mostly contain different antimicrobial agents for biofilm control. These include chlorhexidine, metal salts, and quaternary ammonium compounds, which, however, often kill harmful (dysbiotic) and useful bacteria (homeostatic) (unspecific antimicrobial effect). Recent developments show that innovative concepts shift the ecological balance of plaque in the oral cavity to “physiological commensal bacteria” (homeostasis) or minimize the bacterial colonization on enamel surfaces without having pronounced antimicrobial properties. Examples are biomimetic approaches, i.e. based on selected salivary enzymes or hydroxyapatite.  相似文献   

4.
Comparing bacterial 16S rDNA sequences to GenBank and other large public databases via BLAST often provides results of little use for identification and taxonomic assignment of the organisms of interest. The human microbiome, and in particular the oral microbiome, includes many taxa, and accurate identification of sequence data is essential for studies of these communities. For this purpose, a phylogenetically curated 16S rDNA database of the core oral microbiome, CORE, was developed. The goal was to include a comprehensive and minimally redundant representation of the bacteria that regularly reside in the human oral cavity with computationally robust classification at the level of species and genus. Clades of cultivated and uncultivated taxa were formed based on sequence analyses using multiple criteria, including maximum-likelihood-based topology and bootstrap support, genetic distance, and previous naming. A number of classification inconsistencies for previously named species, especially at the level of genus, were resolved. The performance of the CORE database for identifying clinical sequences was compared to that of three publicly available databases, GenBank nr/nt, RDP and HOMD, using a set of sequencing reads that had not been used in creation of the database. CORE offered improved performance compared to other public databases for identification of human oral bacterial 16S sequences by a number of criteria. In addition, the CORE database and phylogenetic tree provide a framework for measures of community divergence, and the focused size of the database offers advantages of efficiency for BLAST searching of large datasets. The CORE database is available as a searchable interface and for download at http://microbiome.osu.edu.  相似文献   

5.
采用海绵组织离散、细胞分离的方法,对繁茂膜海绵细胞进行纯化、胞内微生物DNA提取,构建了繁茂膜海绵细胞内微生物的16SrDNA克隆,对其遗传多样性进行了分析,发现海绵细胞内微生物16SrDNA序列主要归类于紫硫细菌门(Proteobacteria)中的α-亚门、γ-亚门和浮霉菌门(Planctomycetes)等类群。与研磨直接提取海绵组织DNA所得海绵组织中总微生物多样性相比,海绵细胞内存在丰富的浮霉菌(23%),说明浮霉菌主要存在于海绵细胞胞内。  相似文献   

6.
口腔微生物群落结构是维持机体健康的重要因素,了解动物口腔微生物多样性有助于认识和理解动物的生态学适应。本研究以栖息于安徽黄山的短尾猴为研究对象,采用非损伤性取样法收集了鱼鳞坑YA1群体中19个短尾猴口腔样本,采用改进高盐提取法提取微生物DNA,利用Illumina Miseq测序平台对微生物16S rDNA V3-V4区扩增产物进行双端测序,分析微生物群落结构多样性。研究共获得206 533条优质序列,发现4 685个OTU,归属20个门、310个属。结果表明:短尾猴口腔微生物物种丰富,以变形菌门(Proteobacteria,占总条带44.58%)、厚壁菌门(Firmicutes, 30.28%)、拟杆菌门(Bacteroidetes, 12.27%)、梭杆菌门(Fusobacteria, 7.72%) 和放线菌门(Actinobacteria,3.70%)为主;24个微生物属在所有样本中均有分布,为其核心微生物属;短尾猴口腔中存在大量与口腔疾病相关的微生物和多种低丰富度的潜在病原菌。本研究为进一步研究短尾猴口腔微生物群落结构形成与适应性提供了基础资料,也提示在保护和管理野生猴群中需要应对人畜共患病传播的潜在风险。  相似文献   

7.
福建省稻田土壤细菌群落的16S rDNA-PCR-DGGE分析   总被引:6,自引:0,他引:6  
用不依赖细菌培养的16S rDNA-PCR-DGGE方法对福建省6个不同地区12个取样点的稻田土壤进行细菌群落结构分析.对12份样品直接提取其总DNA,用F341GC/R534引物扩增16SrDNA基因的V3可变区,结合DGGE(denaturing gradient gel electrophoresis)技术分析样品细菌群落组成.结果表明,福建省不同地区的稻田土壤之间细菌群落结构存在较大差异.犬体上可分为闽东、闽南、闽北、闽西4个大类.同一地区的根际土和表土样品之间也存在差异,但差异相对较低,其中龙岩根际土和表土细菌群落结构相似性最大,永泰差异性最大.回收了DGGE图谱中11个条带,测序结果经过Blast比对表明其中10个条带代表的细菌是不可培养的,显示了DGGE技术的优越性.  相似文献   

8.
污水处理活性污泥微生物群落多样性研究   总被引:4,自引:0,他引:4  
为研究污水处理活性污泥微生物多样性,提取了活性污泥宏基因组DNA,并采用细菌通用引物27F和1492R扩增了上海污泥厂活性污泥细菌16S rDNA片段,构建了细菌16S rDNA克隆文库,并对该文库中的微生物群落进行了分析。共获得200条高质量序列并建立系统发育树,结果显示活性污泥主要的细菌类群为变形菌门(Proteobacteria)(91.9%)、厚壁菌门(Firmicures)(4.6%)、拟杆菌门(Bacteroidetes)(2%)、绿弯菌门(Chloroflexi)(0.5%)、硝化螺菌门(Nitrospirae)(1%)。其中,明显的优势菌群为Alcaligenes feacalis(55%)、Pseudomonas aeruginosa(12.8%)和Stenotrophomonas(12.8%),优势菌的产酶能力在活性污泥中显示生态修复功能菌的作用。  相似文献   

9.
【目的】了解黑龙江省大豆田大豆胞囊线虫胞囊可培养细菌的多样性。【方法】运用稀释平板法和16SrDNA基因序列的系统发育分析对胞囊可培养细菌多样性进行研究。【结果】用NA培养基从胞囊上分离90株具有不同菌落形态的细菌。16S rDNA序列分析结果表明:90株菌株分属于7个属22个种。46株属于变形菌门γ亚群(Gammaproteobacteria),32株属于厚壁菌门(Firmicutes),10株属于变形菌门β亚群(Betaproteobacteria),2株属于变形菌门ɑ亚群(Alphaproteobacteria)。假单胞菌属(Pseudomonas)和芽孢杆菌属(Bacillus)为优势菌属。【结果】黑龙江省大豆胞囊线虫胞囊中存在丰富的细菌物种多样性,这些细菌对大豆胞囊线虫可能具有一定的生理生态作用。  相似文献   

10.
The microbiome - the microorganism community that is found on or within an organism's body - is increasingly recognized to shape many aspects of its host biology and is a key determinant of health and disease. Microbiomes modulate the capacity of insect disease vectors (mosquitoes, tsetse flies, sandflies) to transmit parasites and disease. We investigate the diversity and abundance of microorganisms within the hemolymph (i.e. blood) of Biomphalaria snails, the intermediate host for Schistosoma mansoni, using Illumina MiSeq sequencing of the bacterial 16S V4 rDNA. We sampled hemolymph from five snails from six different laboratory populations of B. glabrata and one population of B. alexandrina. We observed 279.84 ± 0.79 amplicon sequence variants per snail. There were significant differences in microbiome composition at the level of individual snails, snail populations and species. Snail microbiomes were dominated by Proteobacteria and Bacteroidetes while water microbiomes from snail tank were dominated by Actinobacteria. We investigated the absolute bacterial load using qPCR: hemolymph samples contained 2784 ± 339 bacteria/μl. We speculate that the microbiome may represent a critical, but unexplored intermediary in the snail–schistosome interaction as hemolymph is in very close contact with the parasite at each step of its development.  相似文献   

11.
Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder characterized by incompletely reversible airflow obstruction. Bacterial infection of the lower respiratory tract contributes to approximately 50% of COPD exacerbations. Even during periods of stable lung function, the lung harbors a community of bacteria, termed the microbiome. The role of the lung microbiome in the pathogenesis of COPD remains unknown. The COPD lung microbiome, like the healthy lung microbiome, appears to reflect microaspiration of oral microflora. Here we describe the COPD lung microbiome of 22 patients with Moderate or Severe COPD compared to 10 healthy control patients. The composition of the lung microbiomes was determined using 454 pyrosequencing of 16S rDNA found in bronchoalveolar lavage fluid. Sequences were analyzed using mothur, Ribosomal Database Project, Fast UniFrac, and Metastats. Our results showed a significant increase in microbial diversity with the development of COPD. The main phyla in all samples were Actinobacteria, Firmicutes, and Proteobacteria. Principal coordinate analyses demonstrated separation of control and COPD samples, but samples did not cluster based on disease severity. However, samples did cluster based on the use of inhaled corticosteroids and inhaled bronchodilators. Metastats analyses demonstrated an increased abundance of several oral bacteria in COPD samples.  相似文献   

12.
A cultivation-independent technique for genetic profiling of PCR-amplified small-subunit rRNA genes (SSU rDNA) was chosen to characterize the diversity and succession of microbial communities during composting of an organic agricultural substrate. PCR amplifications were performed with DNA directly extracted from compost samples and with primers targeting either (i) the V4-V5 region of eubacterial 16S rRNA genes, (ii) the V3 region in the 16S rRNA genes of actinomycetes, or (iii) the V8-V9 region of fungal 18S rRNA genes. Homologous PCR products were converted to single-stranded DNA molecules by exonuclease digestion and were subsequently electrophoretically separated by their single-strand-conformation polymorphism (SSCP). Genetic profiles obtained by this technique showed a succession and increasing diversity of microbial populations with all primers. A total of 19 single products were isolated from the profiles by PCR reamplification and cloning. DNA sequencing of these molecular isolates showed similarities in the range of 92.3 to 100% to known gram-positive bacteria with a low or high G+C DNA content and to the SSU rDNA of gamma-Proteobacteria. The amplified 18S rRNA gene sequences were related to the respective gene regions of Candida krusei and Candida tropicalis. Specific molecular isolates could be attributed to different composting stages. The diversity of cultivated bacteria isolated from samples taken at the end of the composting process was low. A total of 290 isolates were related to only 6 different species. Two or three of these species were also detectable in the SSCP community profiles. Our study indicates that community SSCP profiles can be highly useful for the monitoring of bacterial diversity and community successions in a biotechnologically relevant process.  相似文献   

13.
摘要:【目的】通过比较Cry1Ac蛋白抗性及敏感棉铃虫中肠细菌群落的结构组成,研究中肠微生物是否与棉铃虫Bt抗性产生有关。【方法】首先提取了棉铃虫中肠微生物基因组DNA,通过PCR扩增获得了16S rDNA全长片段及V3区。采用基于16S rDNA 的免培养技术—16S rDNA文库建立和变性梯度凝胶电泳(DGGE)研究了国内特有的Bt抗性和敏感品系棉铃虫中肠细菌群落组成,并对其进行分析和比较。【结果】16S rDNA文库测序结果表明,抗性品系与敏感品系棉铃虫中肠细菌群落特别是优势菌群非常相似,但在部分劣势菌群上存在差异。抗性品系中主要优势菌有:不可培养微生物(Uncultured bacterium)占56.4%,鹑鸡肠球菌(Enterococcus gallinarum)占17.0%,铅黄肠球菌(Enterococcus casseliflavus)占17.0%;敏感品系中主要优势菌为不可培养微生物(Uncultured bacterium)60.2%,鹑鸡肠球菌(Enterococcus gallinarum)占19.3%,铅黄肠球菌(Enterococcus casseliflavus)占14.7%。随后进行的PCR验证表明,部分有差异的劣势菌在两种品系虫体都存在。DGGE图谱分析表明,这两个品系棉铃虫中肠菌群相似性达到92.3%。【结论】敏感品系与抗性品系棉铃虫肠道菌群组成极其相似,推测抗性的产生与肠道微生物无直接关系。  相似文献   

14.
Assessment of the microbial diversity residing in arthropod vectors of medical importance is crucial for monitoring endemic infections, for surveillance of newly emerging zoonotic pathogens, and for unraveling the associated bacteria within its host. The tick Ixodes ricinus is recognized as the primary European vector of disease-causing bacteria in humans. Despite I. ricinus being of great public health relevance, its microbial communities remain largely unexplored to date. Here we evaluate the pathogen-load and the microbiome in single adult I. ricinus by using 454- and Illumina-based metagenomic approaches. Genomic DNA-derived sequences were taxonomically profiled using a computational approach based on the BWA algorithm, allowing for the identification of known tick-borne pathogens at the strain level and the putative tick core microbiome. Additionally, we assessed and compared the bacterial taxonomic profile in nymphal and adult I. ricinus pools collected from two distinct geographic regions in Northern Italy by means of V6-16S rRNA amplicon pyrosequencing and community based ecological analysis. A total of 108 genera belonging to representatives of all bacterial phyla were detected and a rapid qualitative assessment for pathogenic bacteria, such as Borrelia, Rickettsia and Candidatus Neoehrlichia, and for other bacteria with mutualistic relationship or undetermined function, such as Wolbachia and Rickettsiella, was possible. Interestingly, the ecological analysis revealed that the bacterial community structure differed between the examined geographic regions and tick life stages. This finding suggests that the environmental context (abiotic and biotic factors) and host-selection behaviors affect their microbiome.Our data provide the most complete picture to date of the bacterial communities present within I. ricinus under natural conditions by using high-throughput sequencing technologies. This study further demonstrates a novel detection strategy for the microbiomes of arthropod vectors in the context of epidemiological and ecological studies.  相似文献   

15.
四川冬菜中细菌群落组成及多样性   总被引:1,自引:0,他引:1  
【目的】了解腌制4年的四川南充冬菜中细菌群落组成及多样性。【方法】通过16S rDNA多样性分析样品细菌落组成;采用16S rDNA-RFLP方法分析从样品中分离出的纯培养细菌。【结果】16S rDNA多样性分析结果表明,样品中细菌主要属于变形杆菌门(Proteobacteria)和厚壁菌门(Firmicutes),分别占克隆文库的87.9%、7.1%,其中包括Virgibacillus kekensis,Marinococcus albus,Salinicoccus sp.,Lactobacillus halophilus和Halomonas等中度嗜盐菌,仅有5%属于放线菌门(Actinobacteria)。通过纯培养方法从冬菜中分离到35株菌,16S rDNA-RFLP分析结果表明,34株属于厚壁菌门(Firmicutes),包括Virgibacillus,Bacillus megaterium和Gracilibacillus saliphilus等中度嗜盐菌,1株属于放线菌门(Actinobacteria)。【结论】冬菜中细菌群落多样性较低,以中度嗜盐菌为主。  相似文献   

16.
The upper respiratory tract (URT) is a crucial site for host defense, as it is home to bacterial communities that both modulate host immune defense and serve as a reservoir of potential pathogens. Young children are at high risk of respiratory illness, yet the composition of their URT microbiota is not well understood. Microbial profiling of the respiratory tract has traditionally focused on culturing common respiratory pathogens, whereas recent culture-independent microbiome profiling can only report the relative abundance of bacterial populations. In the current study, we used both molecular profiling of the bacterial 16S rRNA gene and laboratory culture to examine the bacterial diversity from the oropharynx and nasopharynx of 51 healthy children with a median age of 1.1 years (range 1–4.5 years) along with 19 accompanying parents. The resulting profiles suggest that in young children the nasopharyngeal microbiota, much like the gastrointestinal tract microbiome, changes from an immature state, where it is colonized by a few dominant taxa, to a more diverse state as it matures to resemble the adult microbiota. Importantly, this difference in bacterial diversity between adults and children accompanies a change in bacterial load of three orders of magnitude. This indicates that the bacterial communities in the nasopharynx of young children have a fundamentally different structure from those in adults and suggests that maturation of this community occurs sometime during the first few years of life, a period that includes ages at which children are at the highest risk for respiratory disease.  相似文献   

17.
The oral bacterial flora in the saliva from two patients with periodontitis and from a periodontally healthy subject were compared using a sequence analysis of 16S rDNA libraries without cultivation. 16S rDNAs were amplified from salivary DNA by PCR and cloned. Randomly selected clones were partially sequenced. On the basis of sequence similarities, the clones were classified into several clusters corresponding to the major phylum of the domain Bacteria. The major phylum in the libraries was the low G+C Gram-positive bacteria. There was no clonal sequence affiliated with periodontopathic bacteria in the salivary sample from the healthy subject, while a number of periodontal pathogens such as Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis and Treponema socranskii were detected in the salivary samples from the patients with periodontitis. In addition, a number of previously uncharacterized and uncultured microorganisms were recognized. These organisms may have some role in periodontal disease. This study reveals some potential for a molecular-biological technique to analyze the oral microflora associated with periodontal disease, including previously uncharacterized and uncultured microorganisms, without cultivation.  相似文献   

18.
Sun L  Qiu F  Zhang X  Dai X  Dong X  Song W 《Microbial ecology》2008,55(3):415-424
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f–1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.  相似文献   

19.
Endophytic bacterial diversity was estimated in Mexican husk tomato plant roots by amplified rDNA restriction analysis and sequence homology comparison of the 16S rDNA genes. Sixteen operational taxonomic units from the 16S rDNA root library were identified based on sequence analysis, including the classes Gammaproteobacteria, Betaproteobacteria, Actinobacteria, and Bacilli. The predominant genera were Stenotrophomonas (21.9%), Microbacterium (17.1%), Burkholderia (14.3%), Bacillus (14.3%), and Pseudomonas (10.5%). In a 16S rDNA gene library of the same plant species' rhizosphere, only common soil bacteria, including Stenotrophomonas, Burkholderia, Bacillus, and Pseudomonas, were detected. We suggest that the endophytic bacterial diversity within the roots of Mexican husk tomato plants is a subset of the rhizosphere bacterial population, dominated by a few genera.  相似文献   

20.
We have constructed a large fosmid library from a mesophilic anaerobic digester and explored its 16S rDNA diversity using a high-density filter DNA–DNA hybridization procedure. We identified a group of 16S rDNA sequences forming a new bacterial lineage named WWE3 (Waste Water of Evry 3). Only one sequence from the public databases shares a sequence identity above 80% with the WWE3 group which hence cannot be affiliated to any known or candidate prokaryotic division. Despite representing a non-negligible fraction (5% of the 16S rDNA sequences) of the bacterial population of this digester, the WWE3 bacteria could not have been retrieved using the conventional 16S rDNA amplification procedure due to their unusual 16S rDNA gene sequence. WWE3 bacteria were detected by polymerase chain reaction (PCR) in various environments (anaerobic digesters, swine lagoon slurries and freshwater biofilms) using newly designed specific PCR primer sets. Fluorescence in situ hybridization (FISH) analysis of sludge samples showed that WWE3 microorganisms are oval-shaped and located deep inside sludge flocs. Detailed phylogenetic analysis showed that WWE3 bacteria form a distinct monophyletic group deeply branching apart from all known bacterial divisions. A new bacterial candidate division status is proposed for this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号