首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
MOTIVATION: Recent advances in DNA microarray technologies have made it possible to measure the expression levels of thousands of genes simultaneously under different conditions. The data obtained by microarray analyses are called expression profile data. One type of important information underlying the expression profile data is the 'genetic network,' that is, the regulatory network among genes. Graphical Gaussian Modeling (GGM) is a widely utilized method to infer or test relationships among a plural of variables. RESULTS: In this study, we developed a method combining the cluster analysis with GGM for the inference of the genetic network from the expression profile data. The expression profile data of 2467 Saccharomyces cerevisiae genes measured under 79 different conditions (Eisen et al., PROC: Natl Acad. Sci. USA, 95, 14683-14868, 1998) were used for this study. At first, the 2467 genes were classified into 34 clusters by a cluster analysis, as a preprocessing for GGM. Then, the expression levels of the genes in each cluster were averaged for each condition. The averaged expression profile data of 34 clusters were subjected to GGM, and a partial correlation coefficient matrix was obtained as a model of the genetic network of S. cerevisiae. The accuracy of the inferred network was examined by the agreement of our results with the cumulative results of experimental studies.  相似文献   

13.
14.
15.
16.
17.
18.
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号