首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.  相似文献   

5.
6.
7.
To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19–24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
11.
12.

Background

Regulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Additionally, sRNA, also plays an important role in maintaining the heterochromatin and centromere structures of the chromosome. Papaya, a trioecious species with recently evolved sex chromosomes, has emerged as an excellent model system to study sex determination and sex chromosome evolution in plants. However, role of small RNA in papaya sex determination is yet to be explored.

Results

We analyzed the high throughput sRNAs reads in the Illumina libraries prepared from male, female, and hermaphrodite flowers of papaya. Using the sRNA reads, we identified 29 miRNAs that were not previously reported from papaya. Including this and two previous studies, a total of 90 miRNAs has been identified in papaya. We analyzed the expression of these miRNAs in each sex types. A total of 65 miRNAs, including 31 conserved and 34 novel mirNA, were detected in at least one library. Fourteen of the 65 miRNAs were differentially expressed among different sex types. Most of the miRNA expressed higher in male flowers were related to the auxin signaling pathways, whereas the miRNAs expressed higher in female flowers were the potential regulators of the apical meristem identity genes. Aligning the sRNA reads identified the sRNA hotspots adjacent to the gaps of the X and Y chromosomes. The X and Y chromosomes sRNA hotspots has a 7.8 and 4.4 folds higher expression of sRNA, respectively, relative to the chromosome wide average. Approximately 75% of the reads aligned to the X chromosome hotspot was identical to that of the Y chromosome hotspot.

Conclusion

By analyzing the large-scale sRNA sequences from three sex types, we identified the sRNA hotspots flanking the gaps of papaya X, Y, and Yh chromosome. The sRNAs expression patterns in these regions were reminiscent of the pericentromeric region indicating that the only remaining gap in each of these chromosomes is likely the centromere. We also identified 14 differentially expressed miRNAs in male, female and hermaphrodite flowers of papaya. Our results provide valuable information toward understanding the papaya sex determination.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-20) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
15.
16.
Plants feature a particularly diverse population of short (s)RNAs, the central component of all RNA silencing pathways. Next generation sequencing techniques enable deeper insights into this complex and highly conserved mechanism and allow identification and quantification of sRNAs. We employed deep sequencing to monitor the sRNAome of developing tomato fruits covering the period between closed flowers and ripened fruits by profiling sRNAs at 10 time-points. It is known that microRNAs (miRNAs) play an important role in development but very little information is available about the majority of sRNAs that are not miRNAs. Here we show distinctive patterns of sRNA expression that often coincide with stages of the developmental process such as flowering, early and late fruit maturation. Moreover, thousands of non-miRNA sRNAs are differentially expressed during fruit development and ripening. Some of these differentially expressed sRNAs derived from transposons but many derive from protein coding genes or regions that show homology to protein coding genes, several of which are known to play a role in flower and fruit development. These findings raise the possibility of a regulative role of these sRNAs during fruit onset and maturation in a crop species. We also identified six new miRNAs and experimentally validated two target mRNAs. These two mRNAs are targeted by the same miRNA but do not belong to the same gene family, which is rare for plant miRNAs. Expression pattern and putative function of these targets indicate a possible role in glutamate accumulation, which contributes to establishing the taste of the fruit.  相似文献   

17.
MicroRNAs (miRNAs) play essential regulatory roles in the development of eukaryotes. Methods based on deep-sequencing have provided a powerful high-throughput strategy for identifying novel miRNAs and have previously been used to identify over 100 novel miRNAs from rice. Most of these reports are related to studies of rice development, tissue differentiation, or abiotic stress, but novel rice miRNAs related to viral infection have rarely been identified. In previous work, we constructed and pyrosequenced the small RNA (sRNA) libraries of rice infected with Rice stripe virus and described the character of the small interfering RNAs (siRNA) derived from the RSV RNA genome. We now report the identification of novel miRNAs from the abundant sRNAs (with a minimum of 100 sequencing reads) in the sRNA library of RSV-infected rice. 7 putative novel miRNAs (pn-miRNAs) whose precursor sequences have not previously been described were identified and could be detected by Northern blot or RT-PCR, and were recognized as novel miRNAs (n-miRNAs). Further analysis showed that 5 of the 7 n-miRNAs were up-expressed while the other 2 n-miRNAs were down-expressed in RSV-infected rice. In addition, 23 pn-miRNAs that were newly produced from 19 known miRNA precursors were also identified. This is first report of novel rice miRNAs produced from new precursors related to RSV infection.  相似文献   

18.
In plants, small RNAs(sRNAs) usually refer to non-coding RNAs(ncRNAs) with lengths of 20–24 nucleotides. sRNAs are involved in the regulation of many essential processes related to plant development and environmental responses. sRNAs in plants are mainly grouped into microRNAs(miRNAs) and small interfering RNAs(siRNAs), and the latter can be further classified into trans-acting siRNAs(ta-siRNAs), repeat-associated siRNAs(ra-siRNAs), natural anti-sense siRNAs(nat-siRNAs), etc. Many sRNAs exhibit a clustered distribution pattern in the genome. Here, we summarize the features and functions of cluster-distributed sRNAs, aimed to not only provide a thorough picture of sRNA clusters(SRCs) in plants, but also shed light on the identification of new classes of functional sRNAs.  相似文献   

19.
Previously, we found that silencing suppression by the 2b protein and six mutants correlated both with their ability to bind to double-stranded (ds) small RNAs (sRNAs) in vitro and with their nuclear/nucleolar localization. To further discern the contribution to suppression activity of sRNA binding and of nuclear localization, we have characterized the kinetics of in vitro binding to a ds sRNA, a single-stranded (ss) sRNA, and a micro RNA (miRNA) of the native 2b protein and eight mutant variants. We have also added a nuclear export signal (NES) to the 2b protein and assessed how it affected subcellular distribution and suppressor activity. We found that in solution native protein bound ds siRNA, miRNA, and ss sRNA with high affinity, at protein:RNA molar ratios ~2:1. Of the four mutants that retained suppressor activity, three showed sRNA binding profiles similar to those of the native protein, whereas the remaining one bound ss sRNA at a 2:1 molar ratio, but both ds sRNAs with 1.5-2 times slightly lower affinity. Three of the four mutants lacking suppressor activity failed to bind to any sRNA, whereas the remaining one bound them at far higher ratios. NES-tagged 2b protein became cytoplasmic, but suppression activity in patch assays remained unaffected. These results support binding to sRNAs at molar ratios at or near 2:1 as critical to the suppressor activity of the 2b protein. They also show that cytoplasmically localized 2b protein retained suppressor activity, and that a sustained nuclear localization was not required for this function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号