首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FAK and Src signaling play important roles in cell differentiation, survival and migration. However, it remains unclear how FAK and Src activities are regulated at the initial stage of stem cell differentiation. We utilized fluorescence resonance energy transfer (FRET)-based FAK and Src biosensors to visualize these kinase activities at the plasma membrane of human mesenchymal stem cells (HMSCs) under the stimulation of osteogenic, myoblastic, or neural induction reagents. Our results indicate that the membrane FAK and Src activities are distinctively regulated by these differentiation induction reagents. FAK and Src activities were both up-regulated with positive feedback upon osteogenic induction, while myoblastic induction only activated Src, but not FAK. Neural induction, however, transiently activated FAK and subsequently Src, which triggered a negative feedback to partially inhibit FAK activity. These results unravel distinct regulation mechanisms of FAK and Src activities during HMSC fate decision, which should advance our understanding of stem cell differentiation in tissue engineering.  相似文献   

2.
3.
The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. Such repetitive strain promotes intestinal epithelial migration across fibronectin in vitro, but signaling mediators for this are poorly understood. We hypothesized that integrin-linked kinase (ILK) mediates strain-stimulated migration in intestinal epithelial cells cultured on fibronectin. ILK kinase activity increased rapidly 5 min after strain induction in both Caco-2 and intestinal epithelial cell-6 (IEC-6) cells. Wound closure in response to strain was reduced in ILK small interfering RNA (siRNA)-transfected Caco-2 cell monolayers when compared with control siRNA-transfected Caco-2 cells. Pharmacological blockade of phosphatidylinositol-3 kinase (PI3K) or Src or reducing Src by siRNA prevented strain activation of ILK. ILK coimmunoprecipitated with focal adhesion kinase (FAK), and this association was decreased by mutation of FAK Tyr925 but not FAK Tyr397. Strain induction of FAK Tyr925 phosphorylation but not FAK Tyr397 or FAK Tyr576 phosphorylation was blocked in ILK siRNA-transfected cells. ILK-Src association was stimulated by strain and was blocked by the Src inhibitor PP2. Finally, ILK reduction by siRNA inhibited strain-induced phosphorylation of myosin light chain and Akt. These results suggest a strain-dependent signaling pathway in which ILK association with FAK and Src mediates the subsequent downstream strain-induced motogenic response and suggest that ILK induction by repetitive deformation may contribute to recovery from mucosal injury and restoration of the mucosal barrier in patients with prolonged ileus. ILK may therefore be an important target for intervention to maintain the mucosa in such patients.  相似文献   

4.
Adhesive signaling plays a key role in cellular differentiation, including in chondrogenesis. Herein, we probe the contribution to early chondrogenesis of two key modulators of adhesion, namely focal adhesion kinase (FAK)/Src and CCN2 (connective tissue growth factor, CTGF). We use the micromass model of chondrogenesis to show that FAK/Src signaling, which mediates cell/matrix attachment, suppresses early chondrogenesis, including the induction of Ccn2, Agc, and Sox6. The FAK/Src inhibitor PP2 elevates Ccn2, Agc, and Sox6 expression in wild-type mesenchymal cells in micromass culture, but not in cells lacking CCN2. Our results suggest a reduction in FAK/Src signaling is a critical feature permitting chondrogenic differentiation and that CCN2 operates downstream of this loss to promote chondrogenesis.  相似文献   

5.
6.
SH-SY5Y neuroblastoma cells are a well-characterized model for studying the induction of neuronal differentiation. TPA treatment of these cells induces cytoskeletal rearrangements that ultimately result in neurite extension. However, the signaling pathways that precede these changes are poorly understood. Other investigators have shown that TPA treatment of SH-SY5Y cells results in increased tyrosine phosphorylation of cytoskeletal-associated proteins, including the adapter protein Cas. In this report, we examine the events upstream and downstream of Cas phosphorylation. We show that TPA treatment induces the PKC-dependent association of tyrosine-phosphorylated Cas with Crk. The activity of two protein tyrosine kinases, Src and FAK, was shown to be necessary and sufficient for TPA-induced Cas phosphorylation. We propose that the PKC-dependent phosphorylation of Cas by Src and FAK promotes the establishment of Cas-Crk complexes and that these interactions may play an important role in regulating the actin cytoskeleton during neuronal differentiation.  相似文献   

7.
To evaluate the potential of three stem cells for cell therapy and tissue engineering applications, the biological behavior and osteogenic capacity of the newly introduced cord-blood-derived, unrestricted somatic stem cells (USSC) were compared with those of mesenchymal stem cells isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). There was no significant difference between the rates of proliferation of the three stem cells. During osteogenic differentiation, alkaline phosphatase (ALP) activity peaked on day 7 in USSC compared to BM-MSC which showed the maximum value of ALP activity on day 14. However, BM-MSC had the highest ALP activity and mineralization during osteogenic induction. In addition, AT-MSC showed the lowest capacity for mineralization during differentiation and had the lowest ALP activity on days 7 and 14. Although AT-MSC expressed higher levels of collagen type I, osteonectin and BMP-2 in undifferentiated state, but these genes were expressed higher in BM-MSC during differentiation. BM-MSC also expressed higher levels of ALP, osteocalcin and Runx2 during induction. Taking together, BM-MSC showed the highest capacity for osteogenic differentiation and hold promising potential for bone tissue engineering and cell therapy applications.  相似文献   

8.
9.
The osteogenic growth peptide (OGP) is a naturally occurring tetradecapeptide that has attracted considerable clinical interest as a bone anabolic agent and hematopoietic stimulator. In vitro studies have demonstrated that OGP directly regulates the bone marrow mesenchymal stem cells' (BMSCs) differentiation into osteoblasts. However, the exact mechanism of this process remains unknown. In the present study, we investigated the role of RhoA/ROCK signaling in differentiation along this lineage using human BMSCs. OGP treatment increased the mRNA level of bone morphogenetic protein-2 and alkaline phosphatase activity after osteogenic induction. Analysis of BMSCs induced in the presence of OGP revealed an increase in RhoA activity, and phosphorylation of FAK and cofilin. The ROCK-specific inhibitors, Y27632, blocked the OGP-induced regulation of BMSC differentiation. Taken together, these data suggest that OGP not only acts on BMSCs to stimulate osteogenic differentiation, but also in a dose-dependent manner, and this effect is mediated via the activation of RhoA/ROCK pathway.  相似文献   

10.
Embryonic stem (ES) cells have been tested for potential cell transplantation therapy for CNS disorders. Understanding their differentiation mechanism and identifying factors involved in driving excitatory and inhibitory neuron lineages should enhance the efficacy and efficiency of the cell transplantation therapy. We tested the hypothesis that selective expression of Src family tyrosine kinases is required for phenotype-specific differentiation and functional maturation of ES cell derived neurons. Cultured mouse pluripotent ES cells were treated with retinoic acid (RA) to induce neural differentiation. After RA induction, neurons derived from ES cells showed significant neurite growth, increased expression of Src, Fyn and Lck and an extension of Src kinase expression from cell body to neurite processes. ES cell derived neuron-like cells expressed neurofilament, synaptophysin, glutamate receptors, NMDA and kainate currents, became vulnerable to excitotoxicity and formed functional excitatory synapses. These developmental events were blocked or attenuated when cells were grown in the presence of Src family kinase inhibitor PP2. However, there was no change in the expression of GABAergic-specific protein GAD67 during PP2 treatment. Our data suggest that Src tyrosine kinases are involved in the terminal differentiation of excitatory neuronal phenotype during ES cell neural differentiation after RA induction.  相似文献   

11.
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.  相似文献   

12.
13.
Infection with cagA-positive Helicobacter pylori (H. pylori) is associated with atrophic gastritis, peptic ulcer, and gastric adenocarcinoma. The cagA gene product CagA is translocated from H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation by Src family kinases (SFKs). Tyrosine-phosphorylated CagA binds and activates SHP-2 phosphatase and the C-terminal Src kinase (Csk) while inducing an elongated cell shape termed the "hummingbird phenotype." Here we show that CagA reduces the level of focal adhesion kinase (FAK) tyrosine phosphorylation in gastric epithelial cells. The decrease in phosphorylated FAK is due to SHP-2-mediated dephosphorylation of FAK at the activating phosphorylation sites, not due to Csk-dependent inhibition of SFKs, which phosphorylate FAK. Coexpression of constitutively active FAK with CagA inhibits induction of the hummingbird phenotype, whereas expression of dominant-negative FAK elicits an elongated cell shape characteristic of the hummingbird phenotype. These results indicate that inhibition of FAK by SHP-2 plays a crucial role in the morphogenetic activity of CagA. Impaired cell adhesion and increased motility by CagA may be involved in the development of gastric lesions associated with cagA-positive H. pylori infection.  相似文献   

14.
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK auto-phosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.  相似文献   

15.
N-myristoyltransferase (NMT) exists in two isoforms, NMT1 and NMT2, that catalyze myristoylation of various proteins crucial in signal transduction, cellular transformation, and oncogenesis. We have recently demonstrated that NMT1 is essential for the early development of mouse embryo. In this report, we have demonstrated that an invariant consequence of NMT1 knock out is defective myelopoesis. Suppressed macrophage colony forming units were observed in M-CSF-stimulated bone marrow cells from heterozygous (+/-) Nmt1-deficient mice. Homozygous (-/-) Nmt1-deficient mouse embryonic stem cells resulted in drastic reduction of macrophages when stimulated to differentiate by M-CSF. Furthermore, to understand the requirement of NMT1 in the monocytic differentiation we investigated the role of NMT, pp60c-Src (NMT substrate) and heat shock cognate protein 70 (inhibitor of NMT), during PMA-induced differentiation of U937 cells. Src kinase activity and protein expression increased during the differentiation process along with regulation of NMT activity by hsc70. NMT1 knock down in PMA treated U937 cells showed defective monocytic differentiation. We report in this study novel observation that regulated total NMT activity and NMT1 is essential for proper monocytic differentiation of the mouse bone marrow cells.  相似文献   

16.
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.Key words: fibronectin, DFMO, polyamines, FAK, Src  相似文献   

17.
Although an elevated level of focal adhesion kinase (FAK) has been observed in a variety of invasive human tumors, forced expression of FAK alone in cultured cells does not cause them to exhibit transformed phenotypes. Therefore, the role of FAK in oncogenic transformation remains unclear. In this study, we have demonstrated that FAK overexpression in Madin-Darby canine kidney epithelial cells rendered them susceptible to transformation by hepatocyte growth factor (HGF). Using various FAK mutants, we found that the simultaneous bindings of Src and p130(cas) were required for FAK to potentiate cell transformation. Expression of FAK-related nonkinase, kinase-deficient Src, or the Src homology 3 domain of p130(cas), which respectively serve as dominant negative versions of FAK, Src, and p130(cas), apparently reversed the transformed phenotypes of FAK-overexpressed cells upon HGF stimulation. Moreover, FAK overexpression was able to enhance HGF-elicited signals, leading to sustained activation of ERK, JNK, and AKT, which could be prevented by the expression of the Src homology 3 domain of p130(cas). Taken together, our results indicate that the synergistic effect of FAK overexpression and HGF stimulation leads to cell transformation and implicate a critical role of p130(cas) in this process.  相似文献   

18.
Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics.  相似文献   

19.
The nonreceptor tyrosine kinase c-Src is activated in most invasive cancers. Activated c-Src binds to FAK in the focal adhesion complex, resulting in the activation of the c-Src/FAK signaling cascade, which regulates cytoskeletal functions. However, the mechanisms by which c-Src/FAK signaling is regulated during conditions of anchorage-independent growth, a hallmark of tumor progression, are not clearly known. Here, an in vivo approach to measure c-Src activity was studied using phospho-specific antibodies against phosphorylated Y418 of c-Src (Src[pY418]), an autophosphorylation site of c-Src, and phosphorylated Y577 of FAK (FAK[pY577]), a known substrate of c-Src. Using genetic and pharmacological approaches to modulate c-Src activity, we showed that the levels of Src[pY418] and FAK[pY577], and the formation of a c-Src/FAK[pY577] complex correlated with the activation state of c-Src in adherent cells. Interestingly, both the in vivo level of Src[pY418] and in vitro c-Src kinase activity were increased in carcinoma cells following disruption of Ca(2+)-dependent cell-matrix adhesion. In contrast, the level of FAK[pY577] and its association with c-Src were reduced in suspended cells. The amount of FAK[pY577] in suspended cells was recovered following attachment of rounded cells to fibronectin-coated polystyrene beads, indicating that cell spreading was not required for phosphorylation of FAK. Moreover, cells expressing activated c-Src showed sustained Src[Y418] phosphorylation, but required Ca(2+)-dependent cell adhesion for phosphorylation of FAK[Y577] and association of c-Src with FAK[pY577]. These findings indicate an important role of integrin-based cell-matrix adhesion in regulating c-Src/FAK signaling under decreased anchorage conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号