首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease selectively affecting upper and lower motor neurons. Patients with ALS suffer from progressive paralysis and eventually die on average after three years. The underlying neurobiology of upper motor neuron degeneration and its effects on the complex network of the brain are, however, largely unknown. Here, we examined the effects of ALS on the structural brain network topology in 35 patients with ALS and 19 healthy controls. Using diffusion tensor imaging (DTI), the brain network was reconstructed for each individual participant. The connectivity of this reconstructed brain network was compared between patients and controls using complexity theory without - a priori selected - regions of interest. Patients with ALS showed an impaired sub-network of regions with reduced white matter connectivity (p = 0.0108, permutation testing). This impaired sub-network was strongly centered around primary motor regions (bilateral precentral gyrus and right paracentral lobule), including secondary motor regions (bilateral caudal middle frontal gyrus and pallidum) as well as high-order hub regions (right posterior cingulate and precuneus). In addition, we found a significant reduction in overall efficiency (p = 0.0095) and clustering (p = 0.0415). From our findings, we conclude that upper motor neuron degeneration in ALS affects both primary motor connections as well as secondary motor connections, together composing an impaired sub-network. The degenerative process in ALS was found to be widespread, but interlinked and targeted to the motor connectome.  相似文献   

3.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls.

Methodology/Principal Findings

Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course.

Conclusions/Significance

We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network.  相似文献   

4.

Background

Dementia is a frequent and devastating complication in Parkinson’s disease (PD). There is an intensive search for biomarkers that may predict the progression from normal cognition (PD-NC) to dementia (PDD) in PD. Mild cognitive impairment in PD (PD-MCI) seems to represent a transitional state between PD-NC and PDD. Few studies have explored the structural changes that differentiate PD-NC from PD-MCI and PDD patients.

Objectives and Methods

We aimed to analyze changes in cortical thickness on 3.0T Magnetic Resonance Imaging (MRI) across stages of cognitive decline in a prospective sample of PD-NC (n = 26), PD-MCI (n = 26) and PDD (n = 20) patients, compared to a group of healthy subjects (HC) (n = 18). Cortical thickness measurements were made using the automatic software Freesurfer.

Results

In a sample of 72 PD patients, a pattern of linear and progressive cortical thinning was observed between cognitive groups in cortical areas functionally specialized in declarative memory (entorhinal cortex, anterior temporal pole), semantic knowledge (parahippocampus, fusiform gyrus), and visuoperceptive integration (banks of the superior temporal sulcus, lingual gyrus, cuneus and precuneus). Positive correlation was observed between confrontation naming and thinning in the fusiform gyrus, parahippocampal gyrus and anterior temporal pole; clock copy with thinning of the precuneus, parahippocampal and lingual gyrus; and delayed memory with thinning of the bilateral anteromedial temporal cortex.

Conclusions

The pattern of regional decreased cortical thickness that relates to cognitive deterioration is present in PD-MCI patients, involving areas that play a central role in the storage of prior experiences, integration of external perceptions, and semantic processing.  相似文献   

5.

Background

Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS) could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß) correlated with clinical subtypes of ALS and were of prognostic value.

Methodology/Principal Findings

In a cross-sectional study including patients with ALS (N = 68) with clinical follow-up data over 6 months, Parkinson''s disease (PD, N = 20), and age-matched controls (N = 40), cerebrospinal fluid (CSF) levels of sAPPα a, sAPPß and neurofilaments (NfHSMI35) were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02) and with longer disease duration (p = 0.01 and p = 0.01, respectively). CSF NfHSMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01). High CSF NfHSMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively). The ratios CSF NfHSMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each). CSF Progranulin decreased with ongoing disease (p = 0.04).

Conclusions

This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP) is linked to progressive neuro-axonal damage (increase of NfHSMI35) and to progression of disease.  相似文献   

6.
Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients.  相似文献   

7.
Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.  相似文献   

8.

Background

Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness) and functional (blood oxygenation dependent level – BOLD) changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP) affecting the right maxillary (V2) division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy.

Methodology/Principal Findings

Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII), motor (MI) and posterior insula), or emotional (DLPFC, Frontal, Anterior Insula, Cingulate) processing of pain. Both structural and functional (to brush-induced allodynia) scans were obtained and averaged from two different imaging sessions separated by 2–6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions.

Conclusions

Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.  相似文献   

9.

Background:

Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas.

Methodology and Principal Findings:

To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer''s disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness.

Conclusions:

In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD.  相似文献   

10.
There is increasing evidence that amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) lie on a clinical, pathological and genetic continuum with patients of one disease exhibiting features of the other. Nevertheless, to date, the underlying grey matter and white matter changes across the ALS-FTD disease continuum have not been explored. In this study fifty-three participants with ALS (n = 10), ALS-FTD (n = 10) and behavioural variant FTD (bvFTD; n = 15) as well as controls (n = 18), underwent detailed clinical assessment plus structural imaging using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis of magnetic resonance brain imaging to examine grey and white matter differences and commonalities across the continuum. Importantly, patient groups were matched for age, education, gender and disease duration. VBM and DTI results showed that changes in the ALS group were confined mainly to the motor cortex and anterior cingulate as well as their underlying white matter tracts. ALS-FTD and bvFTD showed widespread grey matter and white matter changes involving frontal and temporal lobes. Extensive prefrontal cortex changes emerged as a marker for bvFTD compared to other subtypes, while ALS-FTD could be distinguished from ALS by additional temporal lobe grey and white matter changes. Finally, ALS could be mainly distinguished from the other two groups by corticospinal tract degeneration. The present study shows for the first time that FTD and ALS overlap in anterior cingulate, motor cortex and related white matter tract changes across the whole continuum. Nevertheless, frontal and temporal atrophy as well as corticospinal tract degeneration emerged as marker for subtype classification, which will inform future diagnosis and target disease management across the continuum.  相似文献   

11.
Zhang Y  Wu Y  Zhu M  Wang C  Wang J  Zhang Y  Yu C  Jiang T 《PloS one》2011,6(12):e29673
Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications.  相似文献   

12.
The aim of this study was to investigate possible changes of cortical thickness in the visual cortex in primary open-angle glaucoma (POAG) of varying severity. Twenty normal controls (NC), 20 mild (MP) and 17 severe (SP) POAG patients were recruited and scanned using magnetic resonance imaging. Cortical thickness analyses with regions of interest (V1, V2, ventral V3, V4 and V5/MT+) were used to assess the cortical changes among the three groups. Furthermore, the associations of cortical thickness with retinal nerve fiber layer (RNFL) thickness and mean deviation of visual field were analyzed. Compared with the NC group, decreased cortical thickness was detected in the bilateral V5/MT+ areas in the MP group and the left V1, bilateral V2 and V5/MT+ areas in the SP group. Cortical thinning of the bilateral V2 areas was detected in the SP group compared with the MP group. In addition, cortical thinning of these visual areas was related to the ophthalmologic measurements. In conclusion, POAG patients exhibit cortical thinning in the bilateral V5/MT+ in the early stage of disease. The cortical degeneration in visual areas is discrepant with disease progressing and the dorsal pathway might be selectively damaged in POAG. Therefore, the cortical thinning of these visual areas may play a key role in the progression of POAG and can serve as a novel biomarker for accurately evaluating the severity of POAG.  相似文献   

13.

Objectives

To assess and compare cortical thickness (CTh) of patients with prodromal Dementia with Lewy bodies (pro-DLB), prodromal Alzheimer''s disease (pro-AD), DLB dementia (DLB-d), AD dementia (AD-d) and normal ageing.

Methods

Study participants(28 pro-DLB, 27 pro-AD, 31 DLB-d, 54 AD-d and 33 elderly controls) underwent 3Tesla T1 3D MRI and detailed clinical and cognitive assessments. We used FreeSurfer analysis package to measure CTh and investigate patterns of cortical thinning across groups.

Results

Comparison of CTh between pro-DLB and pro-AD (p<0.05, FDR corrected) showed more right anterior insula thinning in pro-DLB, and more bilateral parietal lobe and left parahippocampal gyri thinning in pro-AD. Comparison of prodromal patients to healthy elderly controls showed the involvement of the same regions. In DLB-d (p<0.05, FDR corrected) cortical thinning was found predominantly in the right temporo-parietal junction, and insula, cingulate, orbitofrontal and lateral occipital cortices. In AD-d(p<0.05, FDR corrected),the most significant areas affected included the entorhinal cortices, parahippocampal gyri and parietal lobes. The comparison of AD-d and DLB-d demonstrated more CTh in AD-d in the left entorhinal cortex (p<0.05, FDR corrected).

Conclusion

Cortical thickness is a sensitive measure for characterising patterns of grey matter atrophy in early stages of DLB distinct from AD. Right anterior insula involvement may be a key region at the prodromal stage of DLB and needs further investigation.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a rare disease causing degeneration of the upper and lower motor neuron. Involvement of the bulbar motor neurons often results in fast progressive dysphagia. While cortical compensation of dysphagia has been previously shown in stroke patients, this topic has not been addressed in patients suffering from ALS. In the present study, we investigated cortical activation during deglutition in two groups of ALS patients with either moderate or severe dysphagia. Whole-head MEG was employed on fourteen patients with sporadic ALS using a self-paced swallowing paradigm. Data were analyzed by means of time-frequency analysis and synthetic aperture magnetometry (SAM). Group analysis of individual SAM data was performed using a permutation test. We found a reduction of cortical swallowing related activation in ALS patients compared to healthy controls. Additionally a disease-related shift of hemispheric lateralization was observed. While healthy subjects showed bilateral cortical activation, the right sensorimotor cortex was predominantly involved in ALS patients. Both effects were even stronger in the group of patients with severe dysphagia. Our results suggest that bilateral degeneration of the upper motor neuron in the primary motor areas also impairs further adjusted motor areas, which leads to a strong reduction of 'swallowing related' cortical activation. While both hemispheres are affected by the degeneration a relatively stronger activation is seen in the right hemisphere. This right hemispheric lateralization of volitional swallowing observed in this study may be the only sign of cortical plasticity in dysphagic ALS patients. It may demonstrate compensational mechanisms in the right hemisphere which is known to predominantly coordinate the pharyngeal phase of deglutition. These results add new aspects to our understanding of the pathophysiology of dysphagia in ALS patients and beyond. The compensational mechanisms observed could be relevant for future research in swallowing therapies.  相似文献   

15.
There is growing evidence of activated microglia and inflammatory processes in the cerebral cortex in amyotrophic lateral sclerosis (ALS). Activated microglia is characterized by increased expression of the 18 kDa translocator protein (TSPO) in the brain and may be a useful biomarker of inflammation. In this study, we evaluated neuroinflammation in ALS patients using a radioligand of TSPO, 18F-DPA-714. Ten patients with probable or definite ALS (all right-handed, without dementia, and untreated by riluzole or other medication that might bias the binding on the TSPO), were enrolled prospectively and eight healthy controls matched for age underwent a PET study. Comparison of the distribution volume ratios between both groups were performed using a Mann-Whitney’s test. Significant increase of distribution of volume ratios values corresponding to microglial activation was found in the ALS sample in primary motor, supplementary motor and temporal cortex (p = 0.009, p = 0.001 and p = 0.004, respectively). These results suggested that the cortical uptake of 18F-DPA-714 was increased in ALS patients during the “time of diagnosis” phase of the disease. This finding might improve our understanding of the pathophysiology of ALS and might be a surrogate marker of efficacy of treatment on microglial activation.  相似文献   

16.
Within systemic lupus erythematosus (SLE) patients can be divided into groups with and without central nervous system involvement, the latter being subcategorized as neuropsychiatric systemic lupus erythematosus (NPSLE). While a number of research groups have investigated NPSLE, there remains a lack of consistent application of this diagnostic criteria within neuroimaging studies. Previous neuroimaging research suggests that SLE patients have reduced subcortical and regional gray matter volumes when compared to controls, and that these group differences may be driven by SLE patients with neuropsychiatric symptoms. The current study sought to compare measures of cortical thickness and subcortical structure volume between NPSLE, SLE, and healthy controls. We hypothesized that patients with NPSLE (N = 21) would have thinner cortex and reduced subcortical gray matter volumes when compared to SLE (N = 16) and control subjects (N = 21). All subjects underwent MRI examinations on a 1.5 Tesla Siemens Sonata scanner. Anatomical reconstruction and segmentation were performed using the FreeSurfer image analysis suite. Cortical and subcortical volumes were extracted from FreeSurfer and analyzed for group differences, controlling for age. The NPSLE group exhibited decreased cortical thickness in clusters of the left frontal and parietal lobes as well as in the right parietal and occipital lobes compared to control subjects. Compared to the SLE group, the NPSLE group exhibited comparable thinning in clusters of the frontal and temporal lobes. Controlling for age, we found that between group effects for subcortical gray matter structures were significant for the thalamus (F = 3.06, p = .04), caudate nucleus (F = 3.19, p = .03), and putamen (F = 4.82, p = .005). These results clarify previous imaging work identifying cortical atrophy in a mixed SLE and NPSLE group, and suggest that neuroanatomical abnormalities are specific to SLE patients diagnosed with neuropsychiatric symptoms. Future work should help elucidate the underlying mechanisms underlying the emerging neurobiological profile seen in NPSLE, as well as clarify the apparent lack of overlap between cortical thinning and functional activation results and other findings pointing to increased functional activation during cognitive tasks.  相似文献   

17.

Background

Amyotrophic lateral sclerosis (ALS) is a life-threatening neurodegenerative disease involving upper and lower motor neurons loss. Clinical features are highly variable among patients and there are currently few known disease-modifying factors underlying this heterogeneity. Serotonin is involved in a range of functions altered in ALS, including motor neuron excitability and energy metabolism. However, whether serotoninergic activity represents a disease modifier of ALS natural history remains unknown.

Methodology

Platelet and plasma unconjugated concentrations of serotonin and plasma 5-HIAA, the major serotonin metabolite, levels were measured using HPLC with coulometric detection in a cohort of 85 patients with ALS all followed-up until death and compared to a control group of 29 subjects.

Principal Findings

Platelet serotonin levels were significantly decreased in ALS patients. Platelet serotonin levels did not correlate with disease duration but were positively correlated with survival of the patients. Univariate Cox model analysis showed a 57% decreased risk of death for patients with platelet serotonin levels in the normal range relative to patients with abnormally low platelet serotonin (p = 0.0195). This protective effect remained significant after adjustment with age, gender or site of onset in multivariate analysis. Plasma unconjugated serotonin and 5-HIAA levels were unchanged in ALS patients compared to controls and did not correlate with clinical parameters.

Conclusions/Significance

The positive correlation between platelet serotonin levels and survival strongly suggests that serotonin influences the course of ALS disease.  相似文献   

18.

Background

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurological disorder characterized by selective degeneration of upper and lower motor neurons. The primary triggers for motor neuron degeneration are unknown but inflammation, oxidative stress and mitochondrial defects have been identified as potential contributing factors. Metformin is an anti-type II diabetes drug that has anti-inflammatory and anti-oxidant properties, can bring about mitochondrial biogenesis and has been shown to attenuate pathology in mouse models of Huntington''s disease and multiple sclerosis. We therefore hypothesized that it might increase survival in the SOD1G93A murine model of ALS.

Methodology/Principal Findings

Treatment of male and female SOD1G93A mice (n = ≥6 per sex) with 2 mg/ml metformin in the drinking water from 35 days, resulted in a significant increase in motor unit survival, as measured by in vivo electrophysiology at 100 days, in male EDL muscles (24+/−2 vs. 14+/−2 motor units, p<0.005) and female TA muscles (21+/−1 vs. 15+/−2 motor units, P = 0.0134). We therefore continued to test the effect of 0.5, 2 and 5 mg/ml metformin in the drinking water from 35 days on disease onset and progression (identified by twice weekly determination of weight and neurological score) as well as survival in male and female SOD1G93A mice (n = ≥14 per sex). Results for all groups were compared using Kaplan-Meier time to event analyses. In this survival study, metformin was unable to reduce pathology at any dose and had an unexpected dose-dependent negative effect on the onset of neurological symptoms (P = 0.0236) and on disease progression (P = 0.0362) in female mice.

Conclusions/Significance

This study suggests that metformin is a poor candidate for clinical trial in ALS patients and that the possibility of harmful effects of metformin in female ALS patients with type II diabetes should be investigated.  相似文献   

19.
Neurodegenerative process in amyotrophic lateral sclerosis (ALS) has been proven to involve several cortical and subcortical brain regions within and beyond motor areas. However, how ALS pathology spreads progressively during disease evolution is still unknown. In this cross-sectional study we investigated 54 ALS patients, divided into 3 subsets according to the clinical stage, and 18 age and sex-matched healthy controls, by using tract-based spatial statistics (TBSS) diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) analyses. We aimed to identify white (WM) and gray matter (GM) patterns of disease distinctive of each clinical stage, corresponding to specific clinical milestones. ALS cases in stage 2A (i.e., at diagnosis) were characterized by GM and WM impairment of left motor and premotor cortices and brainstem at ponto-mesenchephalic junction. ALS patients in clinical stage 2B (with impairment of two functional regions) exhibited decreased fractional anisotropy (FA) (p<0.001, uncorrected) and increased mean (MD) and radial diffusivity (RD) (p<0.001, uncorrected) in the left cerebellar hemisphere and brainstem precerebellar nuclei, as well as in motor areas, while GM atrophy (p<0.001, uncorrected) was detected only in the left inferior frontal gyrus and right cuneus. Finally, ALS patients in stage 3 (with impairment of three functional regions) exhibited decreased FA and increased MD and RD (p<0.05, corrected) within WM underneath bilateral pre and postcentral gyri, corpus callosum midbody, long associative tracts and midbrain, while no significant clusters of GM atrophy were observed. Our findings reinforce the hypothesis that the neurodegenerative process propagates along the axonal pathways and develops beyond motor areas from early stages, involving progressively several frontotemporal regions and their afferents and efferents, while the detection of GM atrophy in earlier stages and its disappearance in later stages may be the result of reactive gliosis.  相似文献   

20.

Background

Pathophysiological mechanisms involved in amyotrophic lateral sclerosis (ALS) are complex and none has identified reliable markers useful in routine patient evaluation. The aim of this study was to analyze the CSF of patients with ALS by 1H NMR (Nuclear Magnetic Resonance) spectroscopy in order to identify biomarkers in the early stages of the disease, and to evaluate the biochemical factors involved in ALS.

Methodology

CSF samples were collected from patients with ALS at the time of diagnosis and from patients without neurodegenerative diseases. One and two-dimensional 1H NMR analyses were performed and metabolites were quantified by the ERETIC method. We compared the concentrations of CSF metabolites between both groups. Finally, we performed principal component (PCA) and discriminant analyses.

Principal Findings

Fifty CSF samples from ALS patients and 44 from controls were analyzed. We quantified 17 metabolites including amino-acids, organic acids, and ketone bodies. Quantitative analysis revealed significantly lower acetate concentrations (p = 0.0002) in ALS patients compared to controls. Concentration of acetone trended higher (p = 0.015), and those of pyruvate (p = 0.002) and ascorbate (p = 0.003) were higher in the ALS group. PCA demonstrated that the pattern of analyzed metabolites discriminated between groups. Discriminant analysis using an algorithm of 17 metabolites revealed that patients were accurately classified 81.6% of the time.

Conclusion/Significance

CSF screening by NMR spectroscopy could be a useful, simple and low cost tool to improve the early diagnosis of ALS. The results indicate a perturbation of glucose metabolism, and the need to further explore cerebral energetic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号