首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis.  相似文献   

2.
A theoretical treatment, describing a novel viscosity effect on decomposition of enzyme-ligand complexes, recently appeared (Somogyi et al., 1978). From this approach emerged a mechanistic picture of the manner in which increased viscosity lowers the value of the decomposition rate constant. A refined version of this model is presented herein. The analysis is extended to the molecular microenvironment ultimately responsible for mediating the "viscosity effect." Consideration is given to two major factors: (1) the role of viscosity in attenuating the excess chemical energy and (2) the statistical features of the microviscosity. In view of spatiotemporal inhomogeneity in the liquid structure, the concept of averaged microviscosity is introduced to parametrize the enzyme-ligand recombination probability. Quantitative predictions are consistent with models of liquid structure and with results from enzyme studies. The "viscosity effect" may contribute to substrate compartmentation in organized multi-enzyme systems in vivo.  相似文献   

3.
The molecular coupling of CAS and Crk in response to integrin activation is an evolutionary conserved signaling module that controls cell proliferation, survival and migration. However, when deregulated, CAS/Crk signaling also contributes to cancer progression and developmental defects in humans. Here we highlight recent advances in our understanding of how CAS/Crk complexes assemble in cells to modulate the actin cytoskeleton, and the molecular mechanisms that regulate this process. We discuss in detail the spatiotemporal dynamics of CAS/Crk assembly and how this scaffold recruits specific effector proteins that couple integrin signaling networks to the migration machinery of cells. We also highlight the importance of CAS/Crk signaling in the dual regulation of cell migration and survival mechanisms that operate in invasive cells during development and pathological conditions associated with cancer metastasis.  相似文献   

4.
We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer.  相似文献   

5.
Long non-coding RNAs (LncRNAs) have been recently regarded as systemic regulators in multiple biologic processes including tumorigenesis. In this study, we observed the expression of lncRNA lnc-sox5 was significantly increased in colorectal cancer (CRC). Despite the CRC cell growth, cell cycle and cell apoptosis was not affected by lnc-sox5 knock-down, lnc-sox5 knock-down suppressed CRC cell migration and invasion. In addition, xenograft animal model suggested that lnc-sox5 knock-down significantly suppressed the CRC tumorigenesis. Our results also showed that the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was significantly reduced by lnc-sox5 knock-down and therefore modulated the infiltration and cytotoxicity of CD3+CD8+T cells. Taken together, these results suggested that lnc-sox5 unbalances tumor microenvironment to regulate colorectal cancer progression.  相似文献   

6.
7.
目的:探讨肿瘤相关成纤维细胞(Tancer Associated Fibroblast,TAF)对非小细胞肺癌(Non-small Cell Lung Cancer,NSCLC)恶性生物学行为的影响。方法:选取在本院肿瘤科住院手术的非小细胞肺癌患者,收集术后肺癌标本,马松三色染色(Masson Trichrome Stain)和天狼星红染色(Sirius Red Stain)观察肺癌组织(Lung Cancer Tissue,LCT)、癌旁组织(Pericarcinomatous Tissue,PCT)和正常组织(Normal Tissue,NT)中TAF的表达情况;体外将非小细胞肺癌细胞A549与非小细胞肺癌成纤维细胞P-gp共培养,CCK-8检测共培养前后A549细胞增殖能力;细胞划痕和Trans-well实验分别检测A549细胞迁移和侵袭能力;q RT-PCR和Western blot检测A549细胞上皮间质转化(Epithelial Mesenchymal Transition,EMT)标志蛋白E-cadherin、N-cadherin和Vimentin的表达。结果:Masson和Sirius染色结果显示:肺癌组织中纤维的表达明显高于癌旁组织;与P-gp共培养的A549细胞的增殖、迁移和侵袭能力及上皮间质转化相关蛋白N-cadherin和Vimentin表达均明显高于阴性对照组(P0.05),而E-cadherin的表达明显降低(P0.05)。结论:TAF可能通过诱导非小细胞肺癌细胞EMT的发生从而促进非小细胞肺癌的增殖、迁移和侵袭等恶性生物学行为。  相似文献   

8.
9.
Eukaryotic cells sense and move towards a chemoattractant gradient, a cellular process referred as chemotaxis. Chemotaxis plays critical roles in many physiological processes, such as embryogenesis, neuron patterning, metastasis of cancer cells, recruitment of neutrophils to sites of inflammation, and the development of the model organism Dictyostelium discoideum. Eukaryotic cells sense chemo-attractants using G protein-coupled receptors. Visual chemotaxis assays are essential for a better understanding of how eukaryotic cells control chemoattractant-mediated directional cell migration. Here, we describe detailed methods for: 1) real-time, high-resolution monitoring of multiple chemotaxis assays, and 2) simultaneously visualizing the chemoattractant gradient and the spatiotemporal dynamics of signaling events in neutrophil-like HL60 cells.  相似文献   

10.
Li Z  Xiao J  Wu X  Li W  Yang Z  Xie J  Xu L  Cai X  Lin Z  Guo W  Luo J  Liu M 《Current molecular medicine》2012,12(8):967-981
Bone metastasis is a common and serious consequence of breast cancer. Bidirectional interaction between tumor cells and the bone marrow microenvironment drives a so-called 'vicious cycle' that promotes tumor cell malignancy and stimulates osteolysis. Targeting these interactions and pathways in the tumor-bone microenvironment has been an encouraging strategy for bone metastasis therapy. In the present study, we examined the effects of plumbagin on breast cancer bone metastasis. Our data indicated that plumbagin inhibited cancer cell migration and invasion, suppressed the expression of osteoclast-activating factors, altered the cancer cell induced RANKL/OPG ratio in osteoblasts, and blocked both cancer cell- and RANKL-stimulated osteoclastogenesis. In mouse model of bone metastasis, we further demonstrated that plumbagin significantly repressed breast cancer cell metastasis and osteolysis, inhibited cancer cell induced-osteoclastogenesis and the secretion of osteoclast-activating factors in vivo. At the molecular level, we found that plumbagin abrogated RANKL-induced NF-κB and MAPK pathways by blocking RANK association with TRAF6 in osteoclastogenesis, and by inhibiting the expression of osteoclast-activating factors through the suppression of NF-κB activity in breast cancer cells. Taken together, our data demonstrate that plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment and that plumbagin may serve as a novel agent in the treatment of tumor bone metastasis.  相似文献   

11.
Cell migration relies on traction forces in order to propel a cell. Several computational models have been developed that help explain the trajectory that cells take during migration, but little attention has been placed on traction forces during this process. Here, we investigated the spatiotemporal dynamics of cell migration by using a bio-chemical-mechanical contractility model that incorporates the first steps of cell migration on an array of posts. In the model, formation of a new adhesion causes a reactivation of stress fibre assembly within a cell. The model was able to predict the spatial distribution of traction forces observed with previous experiments. Moreover, the model found that the strain energy exerted by the traction forces of a migrating cell underwent a cyclic relationship that rose with the formation of a new adhesion and fell with the release of an adhesion at its rear.  相似文献   

12.
《Biophysical journal》2022,121(10):1931-1939
Collective cell migration occurs in a wide range of physiological and pathological processes, such as wound healing and tumor metastasis. Experiments showed that many types of cells confined in circular islands can perform coherent angular rotation, yet the underlying mechanisms remain unclear. Here we propose a biomechanical model, including the membrane, microtubules, and nucleus, to study the spatiotemporal evolutions of small cell clusters in confined space. We show that cells can spontaneously transfer from “radial pattern” to “chiral pattern” due to fluctuations. For a pair of cells with identical chiral orientation, the cluster rotates in the opposite direction of the chiral orientation, and the fluctuations can reverse the cluster’s rotational direction. Interestingly, during the persistent rotation, each cell rotates around its own centroid while it is revolving around the island center and shows a constant side to the island center, as tidal locking in astronomy. Furthermore, for a few more cells, coherent angular rotation also appears, and the emergence of a central cell can accelerate the cluster rotation. These findings shed light on collective cell migration in life processes and help to understand the spatiotemporal dynamics of active matter.  相似文献   

13.
BACKGROUND: Fibronectin has a role in vital physiological processes such as cell migration during embryogenesis and wound healing. It mediates the attachment of cells to extracellular matrices that contain fibrous collagens. The affinity of fibronectin for native collagen and denatured collagen (gelatin) is located within a 42 kDa domain that contains four type 1 (F1) and two type 2 (F2) modules. A putative ligand-binding site has been located on an isolated F2 module, but the accessibility of this site in the intact domain is unknown. Thus, structural studies of module pairs and larger fragments are required for a better understanding of the interaction between fibronectin and collagen. RESULTS: The solution structure of the 101-residue 6F1 1F2 module pair, which has a weak affinity for gelatin, has been determined by multidimensional NMR spectroscopy. The tertiary structures determined for each module conform to the F1 and F2 consensus folds established previously. The experimental data suggest that the two modules interact via a small hydrophobic interface but may not be tightly associated. Near-random-coil 1H NMR chemical shifts and fast dynamics for backbone atoms in the linker indicate that this region is unlikely to be involved in the overall stabilisation of the module pair. CONCLUSIONS: The modules in the 6F1 1F2 module pair interact with each other via a flexible linker and a hydrophobic patch, which lies on the opposite side of the 1F2 module to the putative collagen-binding site. The intermodule interaction is relatively weak and transient.  相似文献   

14.
Cellular traction forces, resulting in cell-substrate physical interactions, are generated by actin-myosin complexes and transmitted to the extracellular matrix through focal adhesions. These processes are highly dynamic under physiological conditions and modulate cell migration. To better understand the precise dynamics of cell migration, we measured the spatiotemporal redistribution of cellular traction stresses (force per area) during fibroblast migration at a submicron level and correlated it with nuclear translocation, an indicator of cell migration, on a physiologically relevant extracellular matrix mimic. We found that nuclear translocation occurred in pulses whose magnitude was larger on the low ligand density surfaces than on the high ligand density surfaces. Large nuclear translocations only occurred on low ligand density surfaces when the rear traction stresses completely relocated to a posterior nuclear location, whereas such relocation took much longer time on high ligand density surfaces, probably due to the greater magnitude of traction stresses. Nuclear distortion was also observed as the traction stresses redistributed. Our results suggest that the reinforcement of the traction stresses around the nucleus as well as the relaxation of nuclear deformation are critical steps during fibroblast migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. A traction gradient foreshortening model was proposed to explain how the relocation of rear traction stresses leads to pulsed fibroblast migration.  相似文献   

15.
目的:研究原核表达的Arresten蛋白纯化品对血管内皮细胞及血管生成的抑制作用。方法:MTT法检测Arresten蛋白对人脐静脉内皮细胞(HUVEC)增殖的影响;流式细胞仪分析Arresten蛋白作用下HUVEC凋亡的情况;细胞迁移实验观察Arresten蛋白对HUVEC迁移能力的影响;鸡胚绒毛尿囊膜(CAM)实验观察Arresten蛋白对新生血管的抑制情况。结果:原核表达的Arresten蛋白纯化品能特异性地抑制 HUVEC的增殖、迁移,诱导HUVEC的凋亡,并在一定范围内呈现出剂量—效应关系。Arresten蛋白能有效抑制鸡胚尿囊膜血管的生长(P<0.01)。结论:原核表达的Arresten蛋白纯化品对内皮细胞有特异的抑制作用,能有效抑制血管生成。  相似文献   

16.
17.
Deregulated microRNAs and their roles in tumorigenesis have attracted much attention in recent years. Although miR-503 was shown to be important in tumorigenesis, its role in osteosarcoma remains unknown. In this study, we focused on the expression and mechanisms of miR-503 in osteosarcoma development. We found that miR-503 was down-regulated in osteosarcoma cell lines and primary tumor samples, and the restoration of miR-503 reduced cell proliferation, migration and invasion. Low level of miR-503 in patients with osteosarcoma was associated with considerably shortened disease-free survival. Furthermore, bioinformatic prediction and experimental validation revealed that the anti-tumor effect of miR-503 was probably exerted through targeting and repressing of L1CAM expression. L1CAM was up-regulated in osteosarcoma cell lines and primary tumor samples and the expression level of L1CAM were negatively correlated with miR-503 levels in osteosarcoma tissues. Collectively, our data identify the important roles of miR-503 in osteosarcoma pathogenesis, indicating its potential application in cancer therapy.  相似文献   

18.
Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation -resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation-based collective cell motility dynamics. Our quantitative phenotypes may guide future investigation on the molecular and cellular mechanisms of tyrosine kinase-induced coordinate cell motility and morphogenesis in metastasis.  相似文献   

19.
Sytnyk  V. N.  Dityatev  A. E.  Korogod  S. M. 《Neurophysiology》2001,33(1):11-14
In many cases, an increase in the surface density of cell adhesion molecules (CAM) in the distal parts of a growing neurite is favorable for the neurite elongation. This increase is attained by exocytotic insertion of CAM-containing vesicles into the growth cones with subsequent redistribution of CAM along the cell surface due to lateral diffusion and endocytosis. Using a mathematical model describing these processes, we quantitatively describe conditions providing two qualitatively different profiles in a branching neurite: (i) the CAM surface density increases along both daughter branches, which would be in favor of further outgrowth of both branches, i.e., successful branching, or (ii) the CAM surface density increases along one daughter branch and decreases along another branch, which could lead to the retraction of the latter. The geometric factors and mechanisms underlying the intracellular CAM transport to the daughter growth cones were proved to determine the profile of CAM surface density. A similarity in the diameters of daughter branches, their short lengths, a high value of the lateral transfer constant, and partitioning of CAM transport at the branching point proportionally to the surface areas of daughter branches are in favor of an increase in the CAM surface density along both daughter branches. Asymmetric branching can lead to a decrease in the CAM surface density along the thinner or thicker daughter branch, if CAM trafficking was equally partitioned or was proportional to the branch cross-sectional areas, respectively. The proposed model helps to understand possible relationships between the intracellular CAM trafficking, CAM surface distribution, and geometry of branching of the neurites.  相似文献   

20.
目的:探讨G蛋白偶联胆汁酸受体1(G-protein coupled bile acid receptor 1,GPBAR1/TGR5)对胃癌细胞增殖、迁移和侵袭的影响。方法:免疫组织化学染色方法(Immunohistochemistry,IHC)检测胃癌及癌旁组织芯片中TGR5表达情况;qRT-PCR及Western blot检测胃癌细胞系中TGR5表达水平;小干扰RNA处理AGS、MKN-45胃癌细胞后构建TGR5敲减细胞系,慢病毒载体转染胃癌SGC-7901细胞构建TGR5过表达细胞系;CCK-8实验、平板克隆形成实验、裸鼠皮下移植瘤实验检测TGR5对细胞增殖的影响;流式细胞仪检测TGR5对细胞周期及凋亡的影响;Tanswell实验检测TGR5对胃癌细胞迁移及侵袭的影响;Western blot检测上皮间充质转化(Epithelial-mesenchymal transition,EMT)相关分子β-连环蛋白(β-catenin)、锌脂蛋白转录因子(Snail)、E盒结合锌指蛋白(Zinc finger E-box binding homeobox 1,ZEB)1在AGS、MKN-45及SGC-7901胃癌细胞中的表达。结果:TGR5在胃癌及癌旁组织中均有表达,胃癌组织TGR5高表达率(41.0%)显著高于癌旁组织(9.5%),伴肠化生癌旁组织TGR5高表达率(50%)显著高于不伴肠化生的癌旁组织(0%),胃癌组织TGR5表达与肿瘤大小相关。TGR5在正常人胃上皮永生化细胞株GES-1及各胃癌细胞系中均有表达。TGR5表达敲低的AGS和MKN-45细胞增殖能力减弱、凋亡率显著升高、侵袭和迁移能力显著降低。过表达TGR5的SGC-7901细胞增殖能力增强、克隆形成能力提高、凋亡率明显减低、侵袭和迁移能力显著升高。此外,TGR5过表达显著上调了间质细胞标志物β-catenin、Snail、ZEB1的表达水平。结论:TGR5能够增强胃癌细胞增殖及迁移能力,并抑制细胞凋亡。TGR5可能通过EMT途径介导胃癌细胞转移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号