首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models.

Methodology/Principal Findings

The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyrosol and prostaglandin (PG) E2. In mono-microbial and dual biofilms of C.albicans wild type strains PGE2 levels between 25 and 250 pg/mL were measured. Similar concentrations of purified PGE2 significantly enhanced S.aureus biofilm formation in a mode comparable to that observed in dual species biofilms. Supernatants of the null mutant deficient in PGE2 production did not stimulate the proliferation of S.aureus and the addition of the cyclooxygenase inhibitor indomethacin blocked the S.aureus biofilm formation in a dose-dependent manner. Additionally, S. aureus biofilm formation was boosted by low and inhibited by high farnesol concentrations. Supernatants of the farnesol-deficient C. albicans ATCC10231 strain significantly enhanced the biofilm formation of S. aureus but at a lower level than the farnesol producer SC5314. However, C. albicans ATCC10231 also produced PGE2 but amounts were significantly lower compared to SC5314.

Conclusion/Significance

In conclision, we identified C. albicans PGE2 as a key molecule stimulating the growth and biofilm formation of S. aureus in dual S. aureus/C. albicans biofilms, although C. albicans derived farnesol, but not tyrosol, may also contribute to this effect but to a lesser extent.  相似文献   

3.

Background

Candida albicans is a low level commensal organism in normal human populations with the continuous potential to expand and cause a spectrum of clinical conditions.

Methodology/Principal Findings

Using ex vivo human organ cultures and populations of primary human cells, we have developed several related experimental systems to examine early-stage interactions between C. albicans and mucosal surfaces. Experiments have been conducted both with exogenously added C. albicans and with overtly normal human mucosal surfaces supporting pre-existing infections with natural isolates of Candida. Under different culture conditions, we have demonstrated the formation of C. albicans colonies on human target cells and filament formation, equivalent to tissue invasion.

Conclusions/Significance

These organ culture systems provide a valuable new resource to examine the molecular and cellular basis for Candida colonization of human mucosal surfaces.  相似文献   

4.

Background

Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.

Methodology/Principal Findings

Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours.

Conclusions/Significance

The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.  相似文献   

5.

Background

Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C. albicans biofilms.

Methods

Combinations of five antifungal drugs- fluconazole (FLC), voriconazole (VOR), caspofungin (CSP), amphotericin B (AmB) and nystatin (NYT) with cyclosporine A (CSA) were tested in vitro against planktonic and biofilm growth of C. albicans. Standard broth micro dilution method was used to study planktonic growth, while biofilms were studied in an in vitro biofilm model. A chequerboard format was used to determine fractional inhibitory concentration indices (FICI) of combination effects. Biofilm growth was analyzed using XTT-metabolic assay.

Results

MICs of various antifungal drugs for planktonic growth of C. albicans were lowered in combination with CSA by 2 to 16 fold. Activity against biofilm development with FIC indices of 0.26, 0.28, 0.31 and 0.25 indicated synergistic interactions between FLC-CSA, VOR-CSA, CSP-CSA and AmB-CSA, respectively. Increase in efficacy of the drugs FLC, VOR and CSP against mature biofilms after addition of 62.5 μg/ml of CSA was evident with FIC indices 0.06, 0.14 and 0.37, respectively.

Conclusions

The combinations with CSA resulted in increased susceptibility of biofilms to antifungal drugs. Combination of antifungal drugs with CSA would be an effective prophylactic and therapeutic strategy against biofilm associated C. albicans infections.  相似文献   

6.

Background

Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology

We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion

The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.  相似文献   

7.

Background

Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

Aims

The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

Methods

The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

Results

A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

Conclusions

The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.  相似文献   

8.

Background

Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms.

Methodology/Principal Findings

Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically.

Conclusions/Significance

OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.  相似文献   

9.
10.

Objectives

Epidemic methicillin-resistant S. aureus (MRSA) clones cause infections in both hospital and community settings. As a biofilm phenotype further facilitates evasion of the host immune system and antibiotics, we compared the biofilm-forming capacities of various MRSA clones.

Methods

Seventy-six MRSA classified into 13 clones (USA300, EMRSA-15, Hungarian/Brazilian etc.), and isolated from infections or from carriers were studied for biofilm formation under static and dynamic conditions. Static biofilms in microtitre plates were quantified colorimetrically. Dynamic biofilms (Bioflux 200, Fluxion, USA) were studied by confocal laser-scanning and time-lapse microscopy, and the total volume occupied by live/dead bacteria quantified by Volocity 5.4.1 (Improvision, UK).

Results

MRSA harbouring SCCmec IV produced significantly more biomass under static conditions than SCCmec I–III (P = 0.003), and those harbouring SCCmec II significantly less than those harbouring SCCmec I or III (P<0.001). In the dynamic model, SCCmec I–III harbouring MRSA were significantly better biofilm formers than SCCmec IV (P = 0.036). Only 16 strains successfully formed biofilms under both conditions, of which 13 harboured SCCmec IV and included all tested USA300 strains (n = 3). However, USA300 demonstrated remarkably lower percentages of cell-occupied space (6.6%) compared to the other clones (EMRSA-15 = 19.0%) under dynamic conditions. Time-lapse microscopy of dynamic biofilms demonstrated that USA300 formed long viscoelastic tethers that stretched far from the point of attachment, while EMRSA-15 consisted of micro-colonies attached densely to the surface.

Conclusions

MRSA harbouring SCCmec types IV and I–III demonstrate distinct biofilm forming capacities, possibly owing to their adaptation to the community and hospital settings, respectively. USA300 demonstrated abundant biofilm formation under both conditions, which probably confers a competitive advantage, contributing to its remarkable success as a pathogen.  相似文献   

11.
12.

Background

The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS). Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS.

Methods/Principal Findings

Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms.

Conclusion/Significance

Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.  相似文献   

13.
14.

Background

Appropriate oral hygiene is required to maintain oral health in denture wearers. This study aims to compare the role of denture cleaning methods in combination with overnight storage conditions on biofilm mass and composition on acrylic removable dentures.

Methods

In a cross-over randomized controlled trial in 13 older people, 4 conditions with 2 different mechanical cleaning methods and 2 overnight storage conditions were considered: (i) brushing and immersion in water without a cleansing tablet, (ii) brushing and immersion in water with a cleansing tablet, (iii) ultrasonic cleaning and immersion in water without a cleansing tablet, and (iv) ultrasonic cleaning and immersion in water with a cleansing tablet. Each test condition was performed for 5 consecutive days, preceded by a 2-days wash-out period. Biofilm samples were taken at baseline (control) and at the end of each test period from a standardized region. Total and individual levels of selected oral bacteria (n = 20), and of Candida albicans were identified using the Polymerase Chain Reaction (PCR) technique. Denture biofilm coverage was scored using an analogue denture plaque score. Paired t-tests and Wilcoxon-signed rank tests were used to compare the test conditions. The level of significance was set at α< 5%.

Results

Overnight denture storage in water with a cleansing tablet significantly reduced the total bacterial count (p<0.01). The difference in total bacterial level between the two mechanical cleaning methods was not statistically significant. No significant effect was observed on the amount of Candida albicans nor on the analogue plaque scores.

Conclusions

The use of cleansing tablets during overnight denture storage in addition to mechanical denture cleaning did not affect Candida albicans count, but reduced the total bacterial count on acrylic removable dentures compared to overnight storage in water. This effect was more pronounced when combined with ultrasonic cleaning compared to brushing.

Trial Registration

ClinicalTrials.gov NCT02454413  相似文献   

15.

Background

Sterile larvae—maggots of the green bottle blowfly Lucilia sericata are employed as a treatment tool for various types of chronic wounds. Previous studies reported that excretions/secretions (ES) of the sterile larvae could prevent and remove the biofilms of various species of bacteria. In the present study we assessed the effect of ES from the larvae pretreated with Pseudomonas aeruginosa on the bacteria biofilms.

Methods and Findings

We investigated the effects of ES from the maggot pretreated with P. aeruginosa on the biofilms using microtitre plate assays and on bactericidal effect using the colony-forming unit (CFU) assay. The results showed that only 30 µg of the ES from the pretreated maggots could prevent and degrade the biofilm of P. aeruginosa. However, the CFU count of P. aeruginosa was not decrease when compared to the ES from non pretreated maggots in this study condition. It is suggested that the ES from the pretreated maggot was more effective against biofilm of P. aeruginosa than sterile maggot ES.

Conclusions

Our results showed that the maggot ES, especially the bacteria-pretreated larva ES may provide a new insight into the treatment tool of the bacterial biofilms.  相似文献   

16.
17.

Background

Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms.

Methodology/Principal Findings

The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of representative oral pathogenic bacteria. The Nano-CHX demonstrated potent antibacterial effects on planktonic bacteria and mono-species biofilms at the concentrations of 50–200 µg/mL against Streptococcus mutans, Streptococcus sobrinus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Enterococccus faecalis. Moreover, Nano-CHX effectively suppressed multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans and Porphyromonas gingivalis up to 72 h.

Conclusions/Significance

This pioneering study demonstrates the potent antibacterial effects of the Nano-CHX on oral biofilms, and it may be developed as a novel and promising anti-biofilm agent for clinical use.  相似文献   

18.

Background

Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible.

Methods

Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups.

Findings

S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability.

Conclusions

This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth.  相似文献   

19.

Background

Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage.

Methodology/Principal Findings

We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2′,7′-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2), was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis.

Conclusions

A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses.  相似文献   

20.

Background

Bacteria persist within biofilms on the middle ear mucosa of children with recurrent and chronic otitis media however the mechanisms by which these develop remain to be elucidated. Biopsies can be difficult to obtain from children and their small size limits analysis.

Methods

In this study we aimed to investigate biofilm presence in middle ear effusion (MEE) from children with recurrent acute otitis media (rAOM) and to determine if these may represent infectious reservoirs similarly to those on the mucosa. We examined this through culture, viability staining and fluorescent in situ hybridisation (FISH) to determine bacterial species present. Most MEEs had live bacteria present using viability staining (32/36) and all effusions had bacteria present using the universal FISH probe (26/26). Of these, 70% contained 2 or more otopathogenic species. Extensive DNA stranding was also present. This DNA was largely host derived, representing neutrophil extracellular traps (NETs) within which live bacteria in biofilm formations were present. When treated with the recombinant human deoxyribonuclease 1, Dornase alfa, these strands were observed to fragment.

Conclusions

Bacterial biofilms, composed of multiple live otopathogenic species can be demonstrated in the MEEs of children with rAOM and that these contain extensive DNA stranding from NETs. The NETs contribute to the viscosity of the effusion, potentially contributing to its failure to clear as well as biofilm development. Our data indicates that Dornase alfa can fragment these strands and may play a role in future chronic OM treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号