首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The presence of acetate and pyruvate groups in Klebsiella capsular polysaccharides may be demonstrated and estimated quantitatively by running the proton magnetic resonance spectrum of the polysaccharide (as sodium salt) in deuterium oxide at 95 C. Such spectra also permit an assessment to be made of the number of alpha- and beta-linkages in the repeat unit of the polysaccharide structure.  相似文献   

3.

Background

Glaucoma is a collection of neurodegenerative diseases that affect both the retina and the central visual pathway. We investigated whether metabolites'' concentrations changed in the geniculocalcarine (GCT) and the striate area of occipital lobe by proton magnetic resonance spectroscopy (1H-MRS), suggesting neurodegeneration of the central visual pathway in primary glaucoma.

Methodology/Principal Findings

20 patients with glaucoma in both eyes were paired with 20 healthy volunteers in same gender and an age difference less than 3 years. All the participants were examined by MR imaging including T1 Flair, T2 FSE and 1H-MRS. The T1 intensity and T2 intensity of their GCTs and striate areas were measured. The ratio of N-acetylaspartate (NAA)/Creatine (Cr), Choline (Cho)/Cr, glutamine and glutamate (Glx)/Cr were derived by multi-voxels 1H-MRS in the GCT and the striate area of each brain hemisphere. The T1 intensity and T2 intensity had no difference between the groups. Significant decreases in NAA/Cr and Cho/Cr but no difference in Glx/Cr was found between the groups in both the GCT and the striate area.

Conclusions/Significance

Primary glaucoma affects metabolites'' concentrations in the GCT and the striate area suggesting there is ongoing neurodegenerative process.  相似文献   

4.
Proton Nuclear Magnetic Resonance Spectroscopy of Rabbit Brain Homogenate   总被引:2,自引:2,他引:0  
Abstract: Proton nuclear magnetic resonance (1H NMR) spectroscopy in conjunction with the inversion-recovery spin-echo pulse sequence was used to obtain spectra from rabbit brain homogenate. The instrumental parameters required for the acquisition of spectra together with the assignment of major peaks are given. The rationale and prospectus for the use of this technique for the study of neurochemistry is outlined.  相似文献   

5.
Abstract

The self-association of puromycin has been studied using proton magnetic resonance spectroscopy. The concentration, temperature and pH dependence studies of the proton chemical shifts of the adenine protons indicate that puromycin in aqueous solution at pD 7.4 self associates predominantly through adenine-adenine interaction. At this pD, the amino group of the aminoacyl segment of puromycin has been demonstrated to exist in a equilibrium blend of protonated and non-protonated forms. At pD 2.6, PM is found to exist predominantly in the monomeric from in which the methyl groups of the 6N-dimethyladenine are found to be non-equivalent due to hindered rotation about the C6-N6 bond.  相似文献   

6.
7.
Abstract: Cell culture techniques, high-resolution in vitro 1H nuclear magnetic resonance (NMR) spectroscopy, and chromatographic analyses were used to compare the properties of purified cell populations derived from the PNS and cortical neurones. Cell cultures were immunocytochemically characterised with specific antibodies to ensure purity of the individual cultures. Spectra of perchloric acid extracts of cultured Schwann cells, perineural fibroblasts, dorsal root ganglion neurones, and cortical neurones displayed several common features. However, statistically significant differences were found by 1H NMR spectroscopy in most metabolites among the cell types studied. In addition, cells could be distinguished by the presence or absence of certain amino acids. For example, N -acetylaspartate was present in dorsal root ganglion neurones and cortical neurones, γ-aminobutyric acid was present in large amounts in cortical neurones, and Schwann cell spectra displayed a large signal from glycine. These results extend our earlier findings that different cell types of the CNS exhibit highly characteristic metabolite profiles to now include the major cell types of the PNS. These latter cell types also exhibit characteristic metabolite compositions, such that even Schwann cells and oligodendrocyte type 2 astrocyte (O-2A) progenitor cells—precursors of the myelinating cells of the CNS and PNS, respectively—can be readily distinguished from each other.  相似文献   

8.
Abstract: A miniature swine model for diffuse brain injury has recently been developed that replicates the inertial loading conditions associated with rotational acceleration during automotive accidents. The swine model induces diffuse axonal pathology without macroscopic injury such as contusions and hematomas, thus affording a unique opportunity to study axonal injury with noninvasive techniques such as magnetic resonance imaging (MRI) and spectroscopy (MRS). In the present study, we evaluated this diffuse injury model with proton MRS, in vivo, using a high-field (4.0-T) MR scanner, since MRS has been demonstrated as a sensitive probe for detecting neurochemical abnormalities. Our study examined a region of the swine brain at timepoints before and after brain injury. Spectroscopic results indicate that N -acetylaspartate/creatine is diminished by at least 20% in regions of confirmed axonal pathology, whereas conventional MRI did not detect any abnormalities. These findings suggest that MRS has high sensitivity in diagnosing microscopic pathology following diffuse brain injury.  相似文献   

9.

Background

In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane.

Methods

Toxic podocyte damage was induced by puromycin aminonucleoside in rats (PAN). Urinary exosomes were isolated by ultracentrifugation at different time points during the disease. Exosomal mRNA was isolated, amplified, and the mRNA species were globally assessed by gene array analysis. Tissue-specific gene and protein expression was assessed by RT-qPCR analysis and immunohistochemistry.

Results

Gene array analysis of mRNA isolated from urinary exosomes revealed cystatin C mRNA as one of the most highly regulated genes. Its gene expression increased 7.5-fold by day 5 and remained high with a 1.9-fold increase until day 10. This was paralleled by a 2-fold increase in cystatin C mRNA expression in the renal cortex. Protein expression in the kidneys also dramatically increased with de novo expression of cystatin C in glomerular podocytes in parts of the proximal tubule and the renal medulla. Urinary excretion of cystatin C increased approximately 2-fold.

Conclusion

In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.  相似文献   

10.

Objective

To assess the feasibility of renal proton magnetic resonance spectroscopy for quantification of triglyceride content and to compare spectral quality and reproducibility without and with respiratory motion compensation in vivo.

Materials and Methods

The Institutional Review Board of our institution approved the study protocol, and written informed consent was obtained. After technical optimization, a total of 20 healthy volunteers underwent renal proton magnetic resonance spectroscopy of the renal cortex both without and with respiratory motion compensation and volume tracking. After the first session the subjects were repositioned and the protocol was repeated to assess reproducibility. Spectral quality (linewidth of the water signal) and triglyceride content were quantified. Bland-Altman analyses and a test by Pitman were performed.

Results

Linewidth changed from 11.5±0.4 Hz to 10.7±0.4 Hz (all data pooled, p<0.05), without and with respiratory motion compensation respectively. Mean % triglyceride content in the first and second session without respiratory motion compensation were respectively 0.58±0.12% and 0.51±0.14% (P = NS). Mean % triglyceride content in the first and second session with respiratory motion compensation were respectively 0.44±0.10% and 0.43±0.10% (P = NS between sessions and P = NS compared to measurements with respiratory motion compensation). Bland-Altman analyses showed narrower limits of agreement and a significant difference in the correlated variances (correlation of −0.59, P<0.05).

Conclusion

Metabolic imaging of the human kidney using renal proton magnetic resonance spectroscopy is a feasible tool to assess cortical triglyceride content in humans in vivo and the use of respiratory motion compensation significantly improves spectral quality and reproducibility. Therefore, respiratory motion compensation seems a necessity for metabolic imaging of renal triglyceride content in vivo.  相似文献   

11.
质子磁共振波谱分析在脑挫裂伤中的研究及应用前景   总被引:1,自引:0,他引:1  
脑挫裂伤(brain contusion and laceration,BCL)是最常见的颅脑损伤之一,由于伤情不一,临床上对其早期全面诊断及预后判断较困难.质子磁共振波谱(proton magnetic resonance spectroscopy,1H-MRS)是新兴无创性检测脑生化代谢的技术,能从分子水平反映脑挫裂伤组织的病理生理变化.本文综述了脑挫裂伤的发生机制、病理学特点及1H-MRS在这一领域的研究和应用.  相似文献   

12.
脑内单发环形强化病变是一类在磁共振增强扫描时呈现环形强化的特征性病变。肿瘤和炎症性病变均可表现为环形强化。临床上高级别胶质瘤、单发脑转移瘤和脑脓肿最常见,且用常规影像学方法常难以鉴别。~1HMRS可检测病变内及周围组织的代谢物浓度,反映病变性质及病理过程,结合影像学征象分析对这三种疾病的鉴别诊断意义重大。  相似文献   

13.
Nocturnal enuresis is a common developmental disorder in children; primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype. Previous literature has suggested that the prefrontal cortex and the pons are both involved in micturition control. This study aimed to investigate the metabolic levels of the left prefrontal cortex and the pons in children with PMNE by proton magnetic resonance spectroscopy (1H-MRS). Twenty-five children with PMNE and 25 healthy children took part in our experiments. Magnetic resonance examinations were performed on a Siemens 3T Trio Tim scanner. For each subject, localized 1H-MRS was acquired from the left prefrontal cortex (mainly in brodmann area 9) and the pons with a point-resolved spectroscopy sequence with repetition time 2,000 ms, echo time 30 ms and 64 averages. The LCModel software package was used to analyze the MRS raw data, and two-sample t tests were used to determine significant differences between the two groups. The results revealed a significant reduction in metabolite to total creatine ratios of N-acetylaspartate (NAA/tCr) in the left prefrontal cortex and the pons for children with PMNE compared to healthy children. Our study suggests that metabolism is disturbed in the prefrontal cortex and the pons in children with PMNE, which may be associated with the symptoms of enuresis.  相似文献   

14.

Purpose

A broad spectrum of diseases can manifest cerebellar ataxia. In this study, we investigated whether proton magnetic resonance spectroscopy (MRS) may help differentiate spinocerebellar ataxias (SCA) from multiple systemic atrophy- cerebellar type (MSA-C).

Material and Methods

This prospective study recruited 156 patients with ataxia, including spinocerebellar ataxia (SCA) types 1, 2, 3, 6 and 17 (N = 94) and MSA-C (N = 62), and 44 healthy controls. Single voxel proton MRS in the cerebellar hemispheres and vermis were measured. The differences were evaluated using nonparametric statistic tests.

Results

When compared with healthy controls, the cerebellar and vermis NAA/Cr and NAA/Cho were lower in all patients(p<0.002). The Cho/Cr was lower in SCA2 and MSA-C (p<0.0005). The NAA/Cr and Cho/Cr were lower in MSA-C or SCA2 comparing with SCA3 or SCA6. The MRS features of SCA1 were in between (p<0.018). The cerebellar NAA/Cho was lower in SCA2 than SCA1, SCA3 or SCA6 (p<0.04). The cerebellar NAA/Cho in MSA-C was lower than SCA3 (p<0.0005). In the early stages of diseases (SARA score<10), significant lower NAA/Cr and NAA/Cho in SCA2, SCA3, SCA6 or MSA-C were observed comparing with healthy controls (p<0.017). The Cho/Cr was lower in MSA-C or SCA2 (p<0.0005). Patients with MSA-C and SCA2 had lower NAA/Cr and Cho/Cr than SCA3 or SCA6 (p<0.016).

Conclusion

By using MRS, significantly lower NAA/Cr, Cho/Cr and NAA/Cho in the cerebellar hemispheres and vermis were found in patients with ataxia (SCAs and MSA-C). Rapid neuronal degeneration and impairment of membrane activities were observed more often in patients with MSA-C than those with SCA, even in early stages. MRS could also help distinguish between SCA2 and other subtypes of SCAs. MRS ratios may be of use as biomarkers in early stages of disease and should be further assessed in a longitudinal study.  相似文献   

15.
The changes in 16 cerebral metabolites produced by cardiac arrest and subsequent room temperature autolysis were studied using high-resolution proton nuclear magnetic resonance spectroscopy. Biopsies of rabbit cerebral cortex, cerebral white matter, and cerebellum were quantitatively analyzed for acetate, alanine, gamma-aminobutyric acid, creatine, glutamate, glycine, inositol, lactate, N-acetylaspartate, phosphocreatine, succinate, taurine, and threonine. Of these, N-acetylaspartate and the total creatine pool are the best candidates for use as concentration reference standards linking in vitro to in vivo 1H nuclear magnetic resonance measurements. Both changed little immediately after death, and they varied in a distinctive way among cortex, white matter, and cerebellum.  相似文献   

16.
High-intensity focused ultrasound (HIFU) is a rapidly developing, non-invasive technique for local treatment of solid tumors that produce coagulative tumor necrosis. This study is aimed to investigate the feasibility of proton magnetic resonance spectroscopy (MRS) on early assessing treatment of HIFU ablation in rabbit with VX2 liver tumor. HIFU ablation was performed on normal liver and VX2 tumor in rabbit, and MRS was performed on normal liver and VX2 tumor before and 2 days after 100% HIFU ablation or 80% ablation in tumor volume. Choline (Cho) and choline/lipid (Cho/Lip) ratios between complete and partial HIFU ablation of tumor were compared. Tissues were harvested and sequentially sliced to confirm the necrosis. In normal liver, the Cho value liver was not obviously changed after HIFU (P > .05), but the Cho/Lip ratio was decreased (P < .05). Cho in liver VX2 tumor was much higher than that in normal liver (P < .001). Cho and Cho/Lip ratio were significantly decreased in tumor after complete HIFU ablation and partial HIFU ablation, and the Cho value in complete HIFU tumor ablation did not show any difference from that in normal liver after HIFU (P > .05); however, the Cho value in partial ablation was still higher than that in normal liver before or in tumor after complete HIFU treatment due to the residual part of tumors, and Cho/Lip ratio is lower than that in complete HIFU treatment (P < .001). The changes in MRS parameters were consistent with histopathologic changes of the tumor tissues after treatment. MRS could differentiate the complete tumor necrosis from residual tumor tissue, when combined with magnetic resonance imaging. We conclude that MRS may be applied as an important, non-invasive biomarker for monitoring the thoroughness of HIFU ablation.  相似文献   

17.

Purpose

The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using 1H nuclear magnetic resonance (NMR) spectroscopy.

Materials and Methods

hMSCs (2×106 cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra.

Results

During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs.

Conclusions

In this study, we confirm that metabolomic changes detected by 1H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation.  相似文献   

18.
Biophysics - Cerebral concentrations of N-acetylaspartate, aspartate, and glutamate were determined for the first time simultaneously in patients with severe traumatic brain injury in the remote...  相似文献   

19.
The effect of triethyltin-chloride (TET), a highly neurotoxic compound, on the cellular metabolism of rat brain astrocytes in vitro was examined by nuclear magnetic resonance (NMR) spectroscopy. 5-week-old cultures were exposed to TET (0.2–40 M) either for (1) acute (3h), (2) 24 h, or (3) chronic treatment (8 d). Cells were labeled with 1-13C-glucose, cell extracts were prepared and 31P, 1H, and 13C spectra were analyzed. Cytotoxic effects of TET were assessed by vital dye uptake assay using neutral red (NR) and by exclusion of trypan blue (TB). Cells were examined ultrastructurally by electron microscopy. The data show that the major target of TET at concentrations already causing morphological effects on cultured astrocytes is not the energy metabolism, but that TET rather alters the intracellular concentrations of organic osmolytes, such as myo-inositol, taurine and hypotaurine, which are part of the control of ion and volume regulation and osmotic balance in astrocytes.  相似文献   

20.
目的:利用~1H-MRS研究慢性肝病脑部代谢改变,并探讨~1H-MRS评估慢性肝病脑部代谢异常与肝硬化Child-Pugh分级的相关性。方法:选取经临床确诊为慢性肝炎肝硬化患者42例(child A 19例,child B14例,child C 9例)及健康志愿者15例(对照组),行磁共振平扫及磁共振单体素~1H-MRS检查,计算相关代谢物N-乙酰天门冬氨酸(NAA)、谷氨酰胺复合物(Glx)、胆碱(Cho)、肌醇(mI)和肌酸(Cr)的峰下面积及前四项指标与Cr的比值(NAA/Cr、Glx/Cr、Cho/Cr、mI/Cr),并进行统计学分析,同时对相关代谢物的变化与肝硬化Child-Pugh分级及肝硬化Child-Pugh分级与肝性脑病的关系进行相关性分析。结果:~1HMRS分析显示与正常对照组相比,慢性肝炎肝硬化组Glx/Cr值升高,Cho/Cr与mI/Cr值降低,且差异均有统计学意义(P0.05);不同程度肝硬化病例组对比显示,Glx/Cr值均随着肝硬化程度加重而增大,且Glx/Cr值的差异在child A、child B、child C组中均有统计学意义(P0.05);肝性脑病(HE)组与非肝性脑病组脑代谢物峰下面积比值Glx/Cr、Cho/Cr、mI/Cr比较,差异有统计学意义(P0.05);Child-Pugh分级与Glx/Cr呈正相关,与Cho/Cr、mI/Cr呈负相关;随着肝硬化程度加重,肝性脑病出现概率越高,差异有统计学意义(P0.05)。结论:~1H-MRS作为一种无创性的评价手段,能够反映慢性肝硬化及肝性脑病患者存在脑代谢物浓度异常改变,可作为早期诊断肝硬化、肝性脑病及评价肝硬化、肝性脑病严重程度的一项指标,在一定程度上评估肝性脑病与肝硬化分级具有相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号