首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) inhibit proliferation of allogeneic T cells and express low levels of major histocompatibility complex class I (MHCI), MHCII and vascular adhesion molecule-1 (VCAM-1). We investigated whether their immunosuppressive properties and low immunophenotype protect allogeneic rat MSCs against cytotoxic lysis in vitro and result in a reduced immune response in vivo. Rat MSCs were partially protected against alloantigen-specific cytotoxic T cells in vitro. However, after treatment with IFN-γ and IL-1β, MSCs upregulated MHCI, MHCII and VCAM-1, and cytotoxic lysis was significantly increased. In vivo, allogeneic T cells but not allogeneic MSCs induced upregulation of the activation markers CD25 and CD71 as well as downregulation of CD62L on CD4(+) T cells from recipient rats. However, intravenous injection of allo-MSCs in rats led to the formation of alloantibodies with the capacity to facilitate complement-mediated lysis, although IgM levels were markedly decreased compared with animals that received T cells. The allo-MSC induced immune response was sufficient to lead to significantly reduced survival of subsequently injected allo-MSCs. Interestingly, no increased immunogenicity of IFN-γ stimulated allo-MSCs was observed in vivo. Both the loss of protection against cytotoxic lysis under inflammatory conditions and the induction of complement-activating antibodies will likely impact the utility of allogeneic MSCs for therapeutic applications.  相似文献   

2.
Immune modulation by mesenchymal stem cells   总被引:18,自引:0,他引:18  
Mesenchymal stem cells (MSCs) have been shown to suppress activation of T cells both in vivo and in vitro. In vivo, this may be a way for the body to maintain homeostasis and inhibit immune activation in distinct compartments, such as the bone marrow and the interface between mother and fetus. MSCs modulate the immune function of the major cell populations involved in alloantigen recognition and elimination, including antigen presenting cells, T cells, and natural killer cells. The molecular mechanism that mediates the immunosuppressive effect of MSCs is not completely understood.  相似文献   

3.
Several reports have suggested that mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect in vitro, and thus may have a therapeutic potential for T cell-dependent pathologies. We aimed to establish whether MSCs could be used to control graft-vs-host disease (GVHD), a major cause of morbidity and mortality after allogeneic hemopoietic stem cell transplantation. From C57BL/6 and BALB/c mouse bone marrow cells, we purified and expanded MSCs characterized by the lack of expression of CD45 and CD11b molecules, their typical spindle-shaped morphology, together with their ability to differentiate into osteogenic, chondrogenic, and adipogenic cells. These MSCs suppressed alloantigen-induced T cell proliferation in vitro in a dose-dependent manner, independently of their MHC haplotype. However, when MSCs were added to a bone marrow transplant at a MSCs:T cells ratio that provided a strong inhibition of the allogeneic responses in vitro, they yielded no clinical benefit on the incidence or severity of GVHD. The absence of clinical effect was not due to MSC rejection because they still could be detected in grafted animals, but rather to an absence of suppressive effect on donor T cell division in vivo. Thus, in these murine models, experimental data do not support a significant immunosuppressive effect of MSCs in vivo for the treatment of GVHD.  相似文献   

4.
Modalities for inducing long-lasting immune responses are essential components of vaccine design. Most currently available immunological adjuvants empirically used for this purpose cause some inflammation, limiting clinical acceptability. We show that pentoxifylline (PF), a phosphodiesterase (PDE) inhibitor in common clinical use, enhances long-term persistence of T cell responses, including protective responses to a bacterial immunogen, Salmonella typhimurium, via a cAMP-dependent protein kinase A-mediated effect on T cells if given to mice for a brief period during immunization. PF inhibits activation-mediated loss of superantigen-reactive CD4 as well as CD8 T cells in vivo without significantly affecting their activation, and inhibits activation-induced death and caspase induction in stimulated CD4 as well as CD8 T cells in vitro without preventing the induction of activation markers. Consistent with this ability to prevent activation-induced death in not only CD4 but also CD8 T cells, PF also enhances the persistence of CD8 T cell responses in vivo. Thus, specific inhibition of activation-induced T cell apoptosis transiently during immune priming is likely to enhance the persistence of CD4 and CD8 T cell responses to vaccination, and pharmacological modulators of the cAMP pathway already in clinical use can be used for this purpose as immunological adjuvants.  相似文献   

5.
Bromelain modulates T cell and B cell immune responses in vitro and in vivo   总被引:3,自引:0,他引:3  
The ability to modulate immune responses is a major aim of many vaccine and immunotherapeutic development programs. Bromelain, a mixture of cysteine proteases, modulates immunological responses and has been proposed to be of clinical use. However, the identity of the immune cells affected by bromelain and the specific cellular functions that are altered remain poorly understood. To address these shortcomings in our knowledge, we have used both in vitro and in vivo immunological assays to study the effects of bromelain. We found that bromelain enhanced T cell receptor (TCR) and anti-CD28-mediated T cell proliferation in splenocyte cultures by increasing the costimulatory activity of accessory cell populations. However, despite increased T cell proliferation, bromelain concomitantly decreased IL-2 production in splenocyte cultures. Additionally, bromelain did not affect TCR and CD28-induced proliferation of highly purified CD4+ T cells, but did inhibit IL-2 production by these cells. In vivo, bromelain enhanced T-cell-dependent, Ag-specific, B cell antibody responses. Again, bromelain induced a concomitant decrease in splenic IL-2 mRNA accumulation in immunized mice. Together, these data show that bromelain can simultaneously enhance and inhibit T cell responses in vitro and in vivo via a stimulatory action on accessory cells and a direct inhibitory action on T cells. This work provides important insights into the immunomodulatory activity of bromelain and has important implications for the use of exogenous cysteine proteases as vaccine adjuvants or immunomodulatory agents.  相似文献   

6.
Forkhead Box P3(+) (FOXP3(+)) T cells are regulatory cells important for maintaining immune tolerance. While chemokine- and other homing-receptors are important for T cell migration, it has been unclear how they are regulated in FOXP3(+) T cells. We thoroughly investigated, ex vivo and in vitro, the regulation of chemokine receptor expression on human FOXP3(+) T cells in neonatal cord blood, adult peripheral blood, and tonsils. We found that human FOXP3(+) T cells undergo changes in trafficking receptors according to their stages of activation and differentiation. FOXP3(+) T cells are divided into CD45RA(+) (naive type) and CD45RO(+) (memory type) FOXP3(+) T cells in neonatal blood, adult blood, and tonsils. CD45RA(+)FOXP3(+) T cells mainly express lymphoid tissue homing receptors (CD62L, CCR7, and CXCR4), while CD45RO(+)FOXP3(+) T cells highly express both Th1 and Th2-associated trafficking receptors along with the lymphoid tissue homing receptors at reduced frequencies. Up-regulation of Th1/Th2-associated trafficking receptors begins with activation of CD45RA(+)FOXP3(+) T cells and is completed after their differentiation to CD45RO(+) cells. Some chemokine receptors such as CXCR5 and CXCR6 are preferentially expressed by many FOXP3(+) cells at a specific stage (CD69(+)CD45RO(+)) in tonsils. Our in vitro differentiation study demonstrated that CD45RA(+)FOXP3(+) T cells indeed undergo chemokine receptor switch from CD45RA(+) (secondary lymphoid tissue homing) to CD45RO(+) type (lymphoid and nonlymphoid tissue homing). The orderly regulation of trafficking receptors in FOXP3(+) T cells according to stages of differentiation and activation is potentially important for their tissue-specific migration and regulation of immune responses in humans.  相似文献   

7.
Natural killer T cells: rapid responders controlling immunity and disease   总被引:6,自引:0,他引:6  
Natural killer T (NKT) cells are a subset of T cells that share properties of natural killer cells and conventional T cells. They are involved in immediate immune responses, tumor rejection, immune surveillance and control of autoimmune diseases. Most NKT cells express both an invariant T cell antigen receptor and the NK cell receptor NK1.1, and are referred to as invariant NKT cells. This invariant T cell receptor is restricted to interactions with glycolipids presented by the non-classical MHC, CD1d. These NKT cells rapidly produce high levels of interleukin (IL)-2, IFN-gamma, TNF-alpha, and IL-4 upon stimulation through their TCR. Most also have cytotoxic activity similar to NK cells. NKT cells are involved in a number of pathological conditions, and have been shown to regulate viral infections in vivo, and control tumor growth. They may also play both protective and harmful roles in the progression of certain autoimmune diseases, such as diabetes, lupus, atherosclerosis, and allergen-induced asthma.  相似文献   

8.
Mesenchymal stromal cells (MSC) are part of the bone marrow stem cells repertoire which also includes the main stem cells population of the bone marrow, the hematopoietic stem cells. The main role of MSCs is to support hematopoiesis but they can also give rise to cells of the mesodermal layers. Recently, significant interactions between MSCs and cells from the immune system have been demonstrated: MSCs were found to downregulate T and B lymphocytes, natural killer cells (NK) and antigen presenting cells through various mechanisms, including cell-to cell interaction and soluble factor production. Besides the immunomodulatory effects, MSCs were shown to possess additional stem cells features, such as the self-renewal potential and multipotency. Their debatable transdifferentiation potential to cells of the endo- and exo-dermal layer, including cells of the CNS, may explain in part their reported neuroprotective effects. Studies in vitro and in vivo (in cells cultures and in animal models) have indicated neuroprotective effects. MSCs are believed to promote functional recovery following CNS injury or inflammation, by producing trophic factors that may facilitate the mobilization of endogenous neural stem cells and promote the regeneration or the survival of the affected neurons. These immunomodulatory and neuroprotective features could make MSCs potential candidates for future therapeutic modalities in immune-mediated and neurodegenerative diseases.  相似文献   

9.
MHC class I molecules protect normal and transformed cells from lysis by natural killer (NK) cells through recognition of receptors expressed on leucocytes. Defects in NK cell activity and lymphokine activated killer (LAK) cell generation have been previously demonstrated in patients with renal cell carcinoma (RCC). However, to date, the importance of NK receptor/MHC class I interactions for immune evasion by RCC cells has not been described. In this study, human RCC cell lines (HTB46, HTB47, ACHN, CRL 1933 and HTB44) were found to be susceptible to lysis by both NK cells and interleukin-15 (IL-15)-derived LAK cells from normal donors in vitro. However, when NK cells were co-cultured with RCC cells their expression of the CD94 NK receptor molecule was significantly increased and their cytolytic activity against RCC targets was reduced. The cytolytic activity of NK cells was restored by the addition of IL-15, which further augmented the expression of CD94 on CD56+ NK cells. Disruption of NK receptor-MHC class I interactions by the addition of blocking antibodies to CD94 had no effect on the lysis of K562 or HTB47 targets by NK cells. However, the sensitivity of HTB46 cells to NK-mediated lysis was increased by blocking the CD94 receptor molecule, but only when the NK cells had not been previously co-cultured with RCC cells. This was independent of the presence of IL-15. These results show that RCC cells can inhibit NK activity via CD94 and suggest that disruption of interactions between receptor and ligand on RCC cells in vivo may augment the immune response against tumours by innate effector cells.  相似文献   

10.
Lymphotactin is a potent chemotactic cytokine (chemokine) that is produced by and also attracts T and natural killer (NK) cells. We are studying whether chemokines that affect mainly T cells might also regulate immune responses by preferentially recruiting individual subsets or by affecting cytokine or other chemokine responses. In order to pursue these questions, we need to learn more about the mechanisms regulating lymphotactin production and the cell types capable of releasing this factor. We used new monoclonal antibodies against human lymphotactin to develop a sensitive antigen-capture enzyme linked immunoabsorbent assay (ELISA) that measures chemokine levels in culture fluids. Using this capture ELISA, we showed that lymphotactin could be produced by CD4+ and CD8+ T cells, but only after T cell-receptor-dependent stimulation using bacterial superantigens and not after treatment by inflammatory cytokines or lipopolysaccharide (LPS). Our data show that lymphotactin production responds mainly to T cell-receptor signals in CD4+ and CD8+ T cells, and suggests a mechanism whereby this chemokine could help to regulate T cell immune responses.  相似文献   

11.
HIV replicates primarily in lymphoid tissue and immune activation is a major stimulus in vivo. To determine the cells responsible for HIV replication during Ag-driven T cell activation, we used a novel in vitro model employing dendritic cell presentation of superantigen to CD4(+) T cells. Dendritic cells and CD4(+) T cells are the major constituents of the paracortical region of lymphoid organs, the main site of Ag-specific activation and HIV replication. Unexpectedly, replication occurred in nonproliferating bystander CD4(+) T cells that lacked activation markers. In contrast, activated Ag-specific cells were relatively protected from infection, which was associated with CCR5 and CXC chemokine receptor 4 down-regulation. The finding that HIV replication is not restricted to highly activated Ag-specific CD4(+) T cells has implications for therapy, efforts to eradicate viral reservoirs, immune control of HIV, and Ag-specific immune defects.  相似文献   

12.
Malaria infects 5-10% of humanity and causes around two million deaths annually, mostly in children. The disease is of significant interest to immunologists, as acquired host immunity can limit the clinical impact of infection and partially reduces parasite replication; however, immunological reactions also contribute significantly to pathogenesis and fatalities. This review addresses the view that immunopathology in severe malaria arises predominantly from intravascular lesions resulting from a pathogen-initiated cascade of activated immune effector and regulatory cells infiltrating the vascular beds of diverse target organs, including bone marrow, spleen, brain, placenta and lungs. The main feature distinguishing these processes from classical cellular inflammation is the absence of extravasation, resulting from the intravascular location of the pathogen. Clinical and epidemiological observations combined with experimental infections in animal models suggest that parasite 'molecular patterns' or toxins cause cytokine and chemokine enhancement of infiltrates, composed of macrophages, neutrophils, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma/delta T cells and both CD4(+) and CD8(+) effector T cells, leading to local vascular and organ derangement. Diverse pattern recognition and NK receptors crucially regulate these responding cell populations. Thus, innate immune mechanisms lie at the heart of this massive global public health problem.  相似文献   

13.
Inhibitory receptors specific for alleles of MHC class I proteins play an important role in determining the reactivity and specificity of NK cells. To determine whether these receptors are also able to regulate T cell functions, we have studied anti-viral immune responses in mice transgenic for a class I-specific inhibitory receptor, Ly49A. Although nontransgenic mice express Ly49A primarily on NK cells and some T cells, the Ly49A transgenic mice express Ly49A on all lymphocytes, including T cells. We have assessed the activation, expansion, cytokine production, and cytotoxic activity of CD8 T cells in both transgenic and nontransgenic mice following infection with lymphocytic choriomeningitis virus. As expected, nontransgenic mice made a potent virus-specific CD8 T cell response following virus infection. However, as measured in cytolysis assays and by cytokine production, virus-specific CD8 T cell activity was reduced in Ly49A transgenic mice. This inhibition was largely, but not always exclusively, dependent upon the presence, either in vivo or in vitro, of the Ly49A ligand, H-2Dd. Strikingly Ly49A transgenic mice have reduced capacity to control infection with the virulent lymphocytic choriomeningitis virus variant clone 13. Overall, these studies demonstrate that expression of killer inhibitory receptors can modulate anti-viral T cell responses in vivo and in vitro.  相似文献   

14.
Gamma-aminobutyric acid (GABA) is both a major inhibitory neurotransmitter in the CNS and a product of beta cells of the peripheral islets. Our previous studies, and those of others, have shown that T cells express functional GABAA receptors. However, their subunit composition and physiological relevance are unknown. In this study, we show that a subset of GABAA receptor subunits are expressed by CD4+ T cells, including the delta subunit that confers high affinity for GABA and sensitivity to alcohol. GABA at relatively low concentrations down-regulated effector T cell responses to beta cell Ags ex vivo, and administration of GABA retarded the adoptive transfer of type 1 diabetes (T1D) in NOD/scid mice. Furthermore, treatment with low dose of GABA (600 microg daily) dramatically inhibited the development of proinflammatory T cell responses and disease progression in T1D-prone NOD mice that already had established autoimmunity. Finally, GABA inhibited TCR-mediated T cell cycle progression in vitro, which may underlie GABA's therapeutic effects. The immunoinhibitory effects of GABA on T cells may contribute to the long prodomal period preceding the development of T1D, the immunological privilege of the CNS, and the regulatory effects of alcohol on immune responses. Potentially, pharmacological modulation of GABAA receptors on T cells may provide a new class of therapies for human T1D as well as other inflammatory diseases.  相似文献   

15.
T cell chemokine receptor expression in aging   总被引:5,自引:0,他引:5  
Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4(+) T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmigration assays. Freshly isolated CD4(+) cells from aged (20-22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6, and 8 and CXCR2-5, and a lower level of CCR7 and 9 than those from young (3-4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4(+) cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein-1alpha, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly.  相似文献   

16.
We examined the in vivo behavior of liver natural killer T cells (NKT cells) by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10–20 μm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.  相似文献   

17.
We examined the in vivo behavior of liver natural killer T cells (NKT cells) by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10–20 μm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.  相似文献   

18.
19.
In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM-MSC) cultures. Sorted CD264+ hBM-MSCs from two age-matched donors have elevated β-galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264 hBM-MSCs. Counterintuitive to their aging phenotype, CD264+ hBM-MSCs exhibited comparable survival to matched CD264 hBM-MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony-forming efficiency. These findings have ramifications for the preparation of hBM-MSC therapies given the prevalence of aging CD264+ cells in hBM-MSC cultures and the popularity of colony-forming efficiency as a quality control metric in preclinical and clinical studies with MSCs.  相似文献   

20.
NKT cells play important roles in the regulation of diverse immune responses. Therefore, chemokine receptor expression and chemotactic responses of murine TCRalphabeta NKT cells were examined to define their homing potential. Most NKT cells stained for the chemokine receptor CXCR3, while >90% of Valpha14i-positive and approximately 50% of Valpha14i-negative NKT cells expressed CXCR6 via an enhanced green fluorescent protein reporter construct. CXCR4 expression was higher on Valpha14i-negative than Valpha14i-positive NKT cells. In spleen only, subsets of Valpha14i-positive and -negative NKT cells also expressed CXCR5. NKT cell subsets migrated in response to ligands for the inflammatory chemokine receptors CXCR3 (monokine induced by IFN-gamma/CXC ligand (CXCL)9) and CXCR6 (CXCL16), and regulatory chemokine receptors CCR7 (secondary lymphoid-tissue chemokine (SLC)/CC ligand (CCL)21), CXCR4 (stromal cell-derived factor-1/CXCL12), and CXCR5 (B cell-attracting chemokine-1/CXCL13); but not to ligands for other chemokine receptors. Two NKT cell subsets migrated in response to the lymphoid homing chemokine SLC/CCL21: CD4(-) Valpha14i-negative NKT cells that were L-selectin(high) and enriched for expression of Ly49G2 (consistent with the phenotype of most NKT cells found in peripheral lymph nodes); and immature Valpha14i-positive cells lacking NK1.1 and L-selectin. Mature NK1.1(+) Valpha14i-positive NKT cells did not migrate to SLC/CCL21. BCA-1/CXCL13, which mediates homing to B cell zones, elicited migration of Valpha14i-positive and -negative NKT cells in the spleen. These cells were primarily CD4(+) or CD4(-)CD8(-) and were enriched for Ly49C/I, but not Ly49G2. Low levels of chemotaxis to CXCL16 were only detected in Valpha14i-positive NKT cell subsets. Our results identify subsets of NKT cells with distinct homing and localization patterns, suggesting that these populations play specialized roles in immunological processes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号