首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. The glutamatergic excitatory interneurons (EINs) form the majority of the SG neuron population, but little is known about the mechanisms of signal processing in their synapses.

Methodology

To describe the functional organization and properties of excitatory synapses formed by SG EINs, we did non-invasive recordings from 183 pairs of monosynaptically connected neurons. An intact presynaptic SG EIN was specifically stimulated through the cell-attached pipette while the evoked EPSCs/EPSPs were recorded through perforated-patch from a postsynaptic neuron (laminae I-III).

Principal Findings

We found that the axon of an SG EIN forms multiple functional synapses on the dendrites of a postsynaptic neuron. In many cases, EPSPs evoked by stimulating an SG EIN were sufficient to elicit spikes in a postsynaptic neuron. EPSCs were carried through both Ca2+-permeable (CP) and Ca2+-impermeable (CI) AMPA receptors (AMPARs) and showed diverse forms of functional plasticity. The synaptic efficacy could be enhanced through both activation of silent synapses and strengthening of already active synapses. We have also found that a high input resistance (RIN, >0.5 GΩ) of the postsynaptic neuron is necessary for resolving distal dendritic EPSCs/EPSPs and correct estimation of their efficacy.

Conclusions/Significance

We conclude that the multiple synapses formed by an SG EIN on a postsynaptic neuron increase synaptic excitation and provide basis for diverse forms of plasticity. This functional organization can be important for sensory, i.e. nociceptive, processing in the spinal cord.  相似文献   

2.

Background

Neural activity can be affected by nitric oxide (NO) produced by spiking neurons. Can neural activity also be affected by NO produced in neurons in the absence of spiking?

Methodology/Principal Findings

Applying an NO scavenger to quiescent Aplysia buccal ganglia initiated fictive feeding, indicating that NO production at rest inhibits feeding. The inhibition is in part via effects on neurons B31/B32, neurons initiating food consumption. Applying NO scavengers or nitric oxide synthase (NOS) blockers to B31/B32 neurons cultured in isolation caused inactive neurons to depolarize and fire, indicating that B31/B32 produce NO tonically without action potentials, and tonic NO production contributes to the B31/B32 resting potentials. Guanylyl cyclase blockers also caused depolarization and firing, indicating that the cGMP second messenger cascade, presumably activated by the tonic presence of NO, contributes to the B31/B32 resting potential. Blocking NO while voltage-clamping revealed an inward leak current, indicating that NO prevents this current from depolarizing the neuron. Blocking nitrergic transmission had no effect on a number of other cultured, isolated neurons. However, treatment with NO blockers did excite cerebral ganglion neuron C-PR, a command-like neuron initiating food-finding behavior, both in situ, and when the neuron was cultured in isolation, indicating that this neuron also inhibits itself by producing NO at rest.

Conclusion/Significance

Self-inhibitory, tonic NO production is a novel mechanism for the modulation of neural activity. Localization of this mechanism to critical neurons in different ganglia controlling different aspects of a behavior provides a mechanism by which a humeral signal affecting background NO production, such as the NO precursor L-arginine, could control multiple aspects of the behavior.  相似文献   

3.
Spontaneous and evoked synaptic activity of command neurons for the defensive response of spiracle closing were studied by simultaneous intracellular recording of activity of several identified CNS neurons in snails. Comparison of monosynaptic EPSPs in command neurons evoked by discharges of presynaptic neurons with spontaneous synaptic potentials indicated that the central organization of the defensive reflex is in the form of a two-layered neuron net in which each neuron of the afferent layer possesses a local receptive field, but which overlaps with other afferent neurons. Each neuron of the afferent layer is connected with each neuron of the efferent layer by monosynaptic excitatory connections that differ in efficiency (maximal only with one neuron of the efferent layer). Both receptive fields of neurons of the afferent layer and "fields of efficiency of synaptic connections" are distributed according to the normal law. As a result of this organization the neuron net acquires a new quality: The action of different stimuli leads to the appearance of differently located "spatial excitation profiles" of efferent layer neurons even when this action of the stimulus occurs not at the center of the receptive field.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 26–34, January-February, 1984.  相似文献   

4.
In the buccal ganglia of Aplysia kurodai we have identified neurons (here termed LE neurons, or LE) producing plateau potentials lasting several seconds by application of short depolarizing currents. Results obtained from experiments using various bath solutions suggest that generation of these plateau potentials may be an endogenous property of LE. Application of various intensities or lengths of depolarizing currents induced in LE almost constant plateau potentials with fixed duration and depolarizing size. LE spikes produced monosynaptic EPSPs in the ipsilateral multi-action neuron (MA) and the jaw-closing motor neuron (JC) in the buccal ganglia. Conversely, MA spikes produced monosynaptic IPSPs in LE. There was electrical coupling between LE and both MA and JC. During the feeding-like response elicited by electrical stimulation of the nerve, LE showed rhythmic depolarization almost simultaneously with MA and JC, and firing on the plateau potentials occurred during the period of JC firing, the later phase of radula retraction. Hyperpolarization of LE during the feeding-like response suppressed generation of plateau potentials, though rhythmic small depolarization was still induced. During LE hyperpolarization, the duration of the depolarization of MA and JC was shortened. These results suggest that LE may be an element of the feeding CPG circuit and may contribute to part of the depolarization of MA and JC by generating constant plateau potentials during the feeding response, though LE may not have rhythm-generating ability.  相似文献   

5.
1. In each right and left buccal ganglia of Aplysia kurodai, we identified 4 premotor neurons impinging on the ipsilateral jaw-closing and -opening motoneurons. Three of them (MA1 neurons) had features of multifunctional neurons. Current-induced spikes in the MA1 neurons produced excitatory junction potentials (EJPs) in the buccal muscle fibers. In addition, tactile stimulation of the buccal muscle surface produced a train of spikes in the MA1 neurons without synaptic input. The other neuron (MA2) had only a premotor function. 2. The MA1 and MA2 neurons had similar synaptic effects on the jaw-closing and -opening motoneurons. Current-induced spikes in the premotor neurons gave rise to monosynaptic inhibitory postsynaptic potentials (IPSPs) in the ipsilateral jaw-closing motoneurons. Simultaneously, spikes in one of the MA1 neurons and the MA2 also gave rise to monosynaptic excitatory postsynaptic potentials (EPSPs) in the ipsilateral jaw-opening motoneuron. 3. The IPSPs and the EPSPs induced by spikes in the premotor neurons were reversibly blocked by d-tubocurarine and hexamethonium, respectively, suggesting that the MA1 and MA2 neurons are cholinergic. 4. When depolarizing and hyperpolarizing current pulses were passed into one premotor neuron, attenuated but similar potential changes were produced in another randomly selected premotor neuron in the same ganglion, suggesting that they are electronically coupled.  相似文献   

6.
In the pond snail, Lymnaea stagnalis, the paired buccal ganglia contain 3 octopamine-immunoreactive neurons, which have previously been shown to be part of the feeding network. All 3 OC cells are electrically coupled together and interact with all the known buccal feeding motoneurons, as well as with all the modulatory and central pattern generating interneurons in the buccal ganglia. N1 (protraction) phase neurons: Motoneurons firing in this phase of the feeding cycle receive either single excitatory (depolarising) synaptic inputs (B1, B6 neurons) or a biphasic response (hyperpolarisation followed by depolarisation) (B5, B7 motoneurons). Protraction phase feeding interneurons (SO, N1L, NIM) also receive this biphasic synaptic input after OC stimulation. All of protraction phase interneurons inhibit the OC neurons. N2 (retraction) phase neurons: These motoneurons (B2, B3, B9, B10) and N2 interneurons are hyperpolarised by OC stimulation. N2 interneurons have a variable (probably polysynaptic) effect on the activity of the OC neurons. N3 (swallowing) phase: OC neurons are strongly electrically coupled to both N3 phase (B4, B4cluster, B8) motoneurons and to the N3p interneurons. In case of the interneuronal connection (OC<->N3) the electrical synapse is supplemented by reciprocal chemical inhibition. However, the synaptic connections formed by the OC neurons or N3p interneurons to the other members of the feeding network are not identical. CGC: The cerebral, serotonergic CGC neurons excite the OC cells, but the OC neurons have no effect on the CGC activity. In addition to direct synaptic effects, the OC neurons also evoke long-lasting changes in the activity of feeding neurons. In a silent preparation, OC stimulation may start the feeding pattern, but when fictive feeding is already occurring, OC stimulation decreases the rate of the fictive feeding. Our results suggest that the octopaminergic OC neurons form a sub-population of N3 phase feeding interneurons, different from the previously identified N3p and N3t interneurons. The long-lasting effects of OC neurons suggest that they straddle the boundary between central pattern generator and modulatory neurons.  相似文献   

7.

Background

The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs).

Methodology/Principal findings

Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y1 receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT3 receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone.

Conclusions/Significance

Slow EPSPs mediated by P2Y1 receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.  相似文献   

8.
Multiple site optical recording was used to analyze the neural activity changes caused by conditioned taste aversion (CTA) training in the pond snail Lymnaea stagnalis. In response to electrical stimulation of the median lip nerve, which transmits chemosensory signals of appetitive taste to the central nervous system, we optically detected large numbers of spikes in several parts of the buccal ganglion. The effects of CTA training on the spike responses were examined in two areas of the ganglion where the most active neural responses occurred. In one area (termed Area I) that included the N1 medial (N1M) cells, a class of central pattern generator interneurons involved in feeding behavior, the number of spikes in a period 1500-2000 ms after median lip nerve stimulation was significantly reduced in conditioned animals compared to control animals. In another area (termed Area II) positioned between buccal motoneurons, the B3 and B4CL (cluster) cells, the evoked spike responses were unaffected by CTA training. These results, taken together with our previous results indicating an enhancement of an inhibitory input to the N1M cells during CTA, suggest that an appetitive taste signal transmitted to the N1M cells through the median lip nerves is suppressed during CTA, resulting in a decrease of the feeding response.  相似文献   

9.
The salivary neuroeffector system of Helisoma consists of the paired salivary glands and buccal ganglia. Previous work demonstrated that neuronal control was required for coordination of activity in the two salivary glands. This neuronal control is provided by a pair of identified buccal ganglion neurons, 4R and 4L. This study examines the organization of this neuronal control and addresses the questions of monosynaptic vs. polysynaptic pathways as well as the bilateral effects of each neuron 4. Action potentials in neuron 4 elicit one-for-one EPSPs in a subpopulation of the salivary cells. These EPSPs can, in some cases, be increased by TEA injection into a neuron 4 and are unaffected by the addition of six-times normal calcium. These data coupled with the constancy of synaptic transmission, as well as morphological evidence, further indicate the monosynaptic nature of the connection between neurons 4 and salivary secretory cells. Three different mechanisms exist to insure that activity in 4R and 4L result in coordinated activation of the salivary glands: (1) Lucifer Yellow injection and direct intracellular recording and stimulation demonstrate that both 4R and 4L can send axons to and innervate both salivary glands; (2) both 4R and 4L receive virtually identical synaptic input from higher-order buccal ganglion neurons; and (3) 4R and 4L are electrically coupled. Thus, the system is organized with a high degree of redundancy, and bilateral synchrony of glandular activity is assured by mechanisms at various levels of neuronal organization.  相似文献   

10.
A structure of synaptic connections between the identified sensory and giant command neurons of Helix lucorum was studied. It was found that EPSPs arising in the giant neuron as responses to single action potentials generation in sensory neuron consist of several monosynaptic and several polysynaptic components having different magnitude, latencies, and plasticity. The latencies of monosynaptic components are determined by different presynaptic terminals' lengths.  相似文献   

11.

Background

Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.

Methodology/Principal Findings

Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.

Conclusions

These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo.  相似文献   

12.
Kim SH  Lu HF  Alano CC 《PloS one》2011,6(3):e14731

Background

Sirtuins (Sirt), a family of nicotinamide adenine nucleotide (NAD) dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7), Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity.

Methodology/Principal Findings

To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM). NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD) in neurons through poly (ADP-ribose) polymerase-1 (PARP-1) activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS) produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity.

Conclusions

This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury.  相似文献   

13.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal responses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuations of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

14.

Background

Neuroinflammation plays an important role in the pathogenesis of Parkinson’s disease (PD), inducing and accelerating dopaminergic (DA) neuron loss. Autophagy, a critical mechanism for clearing misfolded or aggregated proteins such as α-synuclein (α-SYN), may affect DA neuron survival in the midbrain. However, whether autophagy contributes to neuroinflammation-induced toxicity in DA neurons remains unknown.

Results

Intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) into young (3-month-old) and aged (16-month-old) male C57BL/6J mice was observed to cause persistent neuroinflammation that was associated with a delayed and progressive loss of DA neurons and accumulation of α-SYN in the midbrain. The autophagic substrate-p62 (SQSTM1) persistently increased, whereas LC3-II and HDAC6 exhibited early increases followed by a decline. In vitro studies further demonstrated that TNF-α induced cell death in PC12 cells. Moreover, a sublethal dose of TNF-α (50 ng/ml) increased the expression of LC3-II, p62, and α-SYN, implying that TNF-α triggered autophagic impairment in cells.

Conclusion

Neuroinflammation may cause autophagic impairment, which could in turn result in DA neuron degeneration in midbrain.  相似文献   

15.

Background

Riboflavin (RF) or vitamin B2 is known to have neuroprotective effects. In the present study, we report the attenuation of the neuroprotective effects of RF under UV-B irradiation. Preconditioning of UV-B irradiated riboflavin (UV-B-RF) showed attenuated neuroprotective effects compared to that of RF in SH-SY5Y neuroblostoma cell line and primary cortical neurons in vitro and a rat model of cerebral ischemia in vivo.

Results

Results indicated that RF pretreatment significantly inhibited cell death and reduced LDH secretion compared to that of the UV-B-RF pretreatment in primary cortical neuron cultures subjected to oxygen glucose deprivation in vitro and cortical brain tissue subjected to ischemic injury in vivo. Further mechanistic studies using cortical neuron cultures revealed that RF treatment induced increased miR-203 expression which in turn inhibited c-Jun expression and increased neuronal cell survival. Functional assays clearly demonstrated that the UV-B-RF preconditioning failed to sustain the increased expression of miR-203 and the decreased levels of c-Jun, mediating the neuroprotective effects of RF. UV-B irradiation attenuated the neuroprotective effects of RF through modulation of the miR-203/c-Jun signaling pathway.

Conclusion

Thus, the ability of UV-B to serve as a modulator of this neuroprotective signaling pathway warrants further studies into its role as a regulator of other cytoprotective/neuroprotective signaling pathways.  相似文献   

16.
Experiments on cats with simultaneous extracellular recording, stimulation of single propriospinal neurons, and intracellular recording of unitary postsynaptic potentials from motoneurons, followed by computer averaging showed that direct stimulation of individual propriospinal cells receiving mono- and disynaptic influences from the medial reticular formation can evoke monosynaptic EPSPs and IPSPs in lower lumbar motoneurons. The amplitude of these EPSPs was 49.6±6.0 and of the IPSPs 28.9±2.9 µV and their synaptic delay was 0.34±0.05 msec. The same propriospinal neuron of the ventral horn of the upper lumbar segments may be connected with several motoneurons of the hind limb muscles.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 300–306, May–June, 1977.  相似文献   

17.
The prey capture phase of feeding behavior in the pteropod molluscClione limacina consists of an explosive extrusion of buccal cones, specialized oral appendages which are used to catch the prey, and significant acceleration of swimming. Several groups of neurons which control different components of prey capture behavior inClione have been previously identified in the CNS. However, the question of their coordination in order to develop a normal behavioral reaction still remains open. We describe here a cerebral interneuron which has wide-spread excitatory and inhibitory effects on a number of neurons in the cerebral and pedal ganglia, directed toward the initiation of prey capture behavior inClione. This bilaterally symmetrical neuron, designated Cr-PC (Cerebral interneuron initiating Prey Capture), produced monosynaptic activation of Cr-A motoneurons, which control buccal cone extrusion, and inhibition of Cr-B and Cr-L motoneurons, whose spike activities maintain buccal cones in a withdrawn position inside the head in non-feeding animals. In addition, Cr-PC produced monosynaptic activation of a number of swim motoneurons and interneurons of the swim central pattern generator (CPG) in the pedal ganglia, pedal serotonergic Pd-SW neurons involved in a peripheral modulation of swimming and the serotonergic Heart Excitor neuron.  相似文献   

18.

Background

Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII) to the reticulum through its fusion with Oleosin (OLEO).

Methodology

Gene constructs including transcobalamin-oleosin (TCII-OLEO) and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO), oleosin-transcobalamin (OLEO-TCII), TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma) and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids.

Principal Findings

The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker) was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids.

Conclusions/Significance

In conclusion, the TCII-OLEO transfection was responsible for apoptosis in N1E-115 cells and rat substantia nigra and for Parkinson-like phenotype. This suggests evaluating whether vitamin B12 deficit could aggravate the PD in patients under Levodopa therapy by impairing S-adenosylmethionine synthesis in substantia nigra.  相似文献   

19.

Background

Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline.

Methods

In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week.

Results

Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures.

Conclusions

The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.  相似文献   

20.

Background

The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.

Methodology/Principal Findings

We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (≥1 µM) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 µM) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 µM) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA''s effects in an active network.

Conclusions/Significance

Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号