首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity1. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes2. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia3,4. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries5,6. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation.The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS)7 for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro- and micro-pores. Mechanical conditioning from pulsatile flow bioreactor supported SMC orientation and enhanced ECM production in scaffolds. These results suggest that elastomeric scaffolds and mechanical conditioning of bioreactor culture may be a promising method for arterial tissue engineering.  相似文献   

2.
A pivotal requirement for the generation of vascularized tissue equivalents is the development of culture systems that provide a physiological perfusion of the vasculature and tissue-specific culture conditions. Here, we present a bioreactor system that is suitable to culture vascularized tissue equivalents covered with culture media and at the air–medium interface, which is a vital stimulus for skin tissue. For the perfusion of the vascular system a new method was integrated into the bioreactor system that creates a physiological pulsatile medium flow between 80 and 120 mmHg to the arterial inflow of the equivalent's vascular system. Human dermal microvascular endothelial cells (hDMECs) were injected into the vascular system of a biological vascularized scaffold based on a decellularized porcine jejunal segment and cultured in the bioreactor system for 14 days. Histological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining revealed that the hDMECs were able to recolonize the perfused vascular structures and expressed endothelial cell specific markers such as platelet endothelial cell adhesion molecule and von Willebrand factor. These results indicate that our bioreactor system can serve as a platform technology to generate advanced bioartificial tissues with a functional vasculature for future clinical applications.  相似文献   

3.
It is generally accepted that dynamic culture conditions are required for vascular tissue engineering. We compared the effects of two dynamic culture systems, a perfusion and a rotating bioreactor, using tubular constructs based on hyaluronic acid seeded with porcine aortic smooth muscle cells (SMC), that we recently showed to be adequate for the generation of vascular tissue. In perfused constructs mechanical stimulation importantly affected cell morphology, increased the incidence of cell proliferation and reduced apoptosis. However, extracellular matrix deposition, cytoskeletal organization and mechanical properties were poor. In rotated constructs cell proliferation was also higher and apoptosis lower than in static controls. Rotated constructs showed the highest ultimate stress and the lowest elastic modulus. Our data indicate that the rotating bioreactor is more efficient than the perfusion bioreactor and we then suggest that this method can be considered a valid alternative to complex bioreactor systems described in the literature.  相似文献   

4.
Wendt D  Stroebel S  Jakob M  John GT  Martin I 《Biorheology》2006,43(3-4):481-488
In this work, we assessed whether culture of uniformly seeded chondrocytes under direct perfusion, which supplies the cells with normoxic oxygen levels, can maintain a uniform distribution of viable cells throughout porous scaffolds several milimeters in thickness, and support the development of uniform tissue grafts. An integrated bioreactor system was first developed to streamline the steps of perfusion cell seeding of porous scaffolds and perfusion culture of the cell-seeded scaffolds. Oxygen tensions in perfused constructs were monitored by in-line oxygen sensors incorporated at the construct inlet and outlet. Adult human articular chondrocytes were perfusion-seeded into 4.5 mm thick foam scaffolds at a rate of 1 mm/s. Cell-seeded foams were then either cultured statically in dishes or further cultured under perfusion at a rate of 100 microm/s for 2 weeks. Following perfusion seeding, viable cells were uniformly distributed throughout the foams. Constructs subsequently cultured statically were highly heterogeneous, with cells and matrix concentrated at the construct periphery. In contrast, constructs cultured under perfusion were highly homogeneous, with uniform distributions of cells and matrix. Oxygen tensions of the perfused medium were maintained near normoxic levels (inlet congruent with 20%, outlet > 15%) at all times of culture. We have demonstrated that perfusion culture of cells seeded uniformly within porous scaffolds, at a flow rate maintaining a homogeneous oxygen supply, supports the development of uniform engineering tissue grafts of clinically relevant thicknesses.  相似文献   

5.
Much effort has been devoted to develop and advance the methodology to regenerate functional small-diameter arterial bypasses. In the physiological environment, both mechanical and chemical stimulation are required to maintain the proper development and functionality of arterial vessels1,2.Bioreactor culture systems developed by our group are designed to support vessel regeneration within a precisely controlled chemo-mechanical environment mimicking that of native vessels. Our bioreactor assembly and maintenance procedures are fairly simple and highly repeatable3,4. Smooth muscle cells (SMCs) are seeded onto a tubular polyglycolic acid (PGA) mesh that is threaded over compliant silicone tubing and cultured in the bioreactor with or without pulsatile stimulation for up to 12 weeks. There are four main attributes that distinguish our bioreactor from some predecessors. 1) Unlike other culture systems that simulate only the biochemical surrounding of native blood vessels, our bioreactor also creates a physiological pulsatile environment by applying cyclic radial strain to the vessels in culture. 2) Multiple engineered vessels can be cultured simultaneously under different mechanical conditions within a controlled chemical environment. 3) The bioreactor allows a mono layer of endothelial cells (EC) to be easily coated onto the luminal side of engineered vessels for animal implantation models. 4) Our bioreactor can also culture engineered vessels with different diameter size ranged from 1 mm to 3 mm, saving the effort to tailor each individual bioreactor to fit a specific diameter size. The engineered vessels cultured in our bioreactor resemble native blood vessels histologically to some degree. Cells in the vessel walls express mature SMC contractile markers such as smooth muscle myosin heavy chain (SMMHC)3. A substantial amount of collagen is deposited within the extracellular matrix, which is responsible for ultimate mechanical strength of the engineered vessels5. Biochemical analysis also indicates that collagen content of engineered vessels is comparable to that of native arteries6. Importantly, the pulsatile bioreactor has consistently regenerated vessels that exhibit mechanical properties that permit successful implantation experiments in animal models3,7. Additionally, this bioreactor can be further modified to allow real-time assessment and tracking of collagen remodeling over time, non-invasively, using a non-linear optical microscopy (NLOM)8. To conclude, this bioreactor should serve as an excellent platform to study the fundamental mechanisms that regulate the regeneration of functional small-diameter vascular grafts.Download video file.(69M, mov)  相似文献   

6.
Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties.  相似文献   

7.
《Bioscience Hypotheses》2008,1(6):319-323
Developing large-sized engineered bone constructs (LEBCs) become nowadays a great challenge of tissue engineering due to the internal cell necrosis in the cultured constructs. Mechanical loadings in bioreactors have improved the development of engineered constructs. We hypothesize that perfusion–compression bioreactor will achieve the growth of LEBCs in vitro. At the early stage of construction, the LEBCs in vitro develop without internal limitations in constructs in the bioreactor. At the after-mineralization stage of construction, the bioreactor provides specific conditions for remaining osteocytes buried within mineralized matrix normal viability by the compression-induced fluid flows in the lacuno-canalicular cavities and mechanical stimuli within constructs. Moreover, the LEBCs in vitro achieve the functional development similar to modeling adaptation of bone in vivo. Therefore, the perfusion–compression bioreactor may be the optimum choice for constructing the LEBCs in vitro.  相似文献   

8.
Tissue engineering of vascular grafts.   总被引:8,自引:0,他引:8  
A Ratcliffe 《Matrix biology》2000,19(4):353-357
The challenge of tissue engineering blood vessels with the mechanical properties of native vessels, and with the anti-thrombotic properties required is immense. Recent advances, however, indicate that the goal of providing a tissue-engineered vascular graft that will remain patent in vivo for substantial periods of time, is achievable. For instance, collagen gels have been used to fabricate a tissue in vitro that is representative of a native vessel: an acellular collagen tubular structure, when implanted as a vascular graft, was able to function, and to become populated with host cells. A completely cellular approach culturing cells into tissue sheets and wrapping these around a mandel was able to form a layered tubular structure with impressive strength. Culture of cells onto a biodegradable scaffold within a dynamic bioreactor, generated a tissue-engineered vascular graft with substantial stiffness and, when lined with endothelial cells, was able to remain patent for up to 4 weeks in vivo. In our experiments, use of a non-degradable polyurethane scaffold and culture with smooth muscle cells generated a construct with mechanical properties similar to native vessels. This composite tissue engineered vascular graft with an endothelial layer formed using fluid shear stress to align the endothelial cells, was able to remain patent with an neointima for up to 4 weeks. These results show that tissue engineering of vascular grafts has true potential for application in the clinical situation.  相似文献   

9.
A bioreactor has been developed to apply different regimes of physical stimulation to tissue specimens under highly controlled conditions. The computer-controlled device exposes specimens to compressive deformation at various strains and frequencies, measures the load applied to each sample and allows simultaneous medium stirring at different velocities. Validation tests confirmed the accuracy of the system in (i) its displacement (errors averaged 0.072+/-0.051 microm), and in (ii) setting the contact with the samples utilizing micrometer screws coupled to plungers (errors averaged 1.74+/-0.36% for samples of 1.60-3.18 mm thickness), thus ensuring accurate compressive deformation. The developed bioreactor, which represents an advance in the technology for physical stimulation of tissue specimens, is currently used to apply compressive deformation and hydrodynamic forces to human chondrocytes cultured in biodegradable polymer scaffolds, with the goals of (i) engineering functional grafts for the repair of cartilage defects (ii).  相似文献   

10.
Each year, hundreds of thousands of patients undergo coronary artery bypass surgery in the United States.(1) Approximately one third of these patients do not have suitable autologous donor vessels due to disease progression or previous harvest. The aim of vascular tissue engineering is to develop a suitable alternative source for these bypass grafts. In addition, engineered vascular tissue may prove valuable as living vascular models to study cardiovascular diseases. Several promising approaches to engineering blood vessels have been explored, with many recent studies focusing on development and analysis of cell-based methods.(2-5) Herein, we present a method to rapidly self-assemble cells into 3D tissue rings that can be used in vitro to model vascular tissues. To do this, suspensions of smooth muscle cells are seeded into round-bottomed annular agarose wells. The non-adhesive properties of the agarose allow the cells to settle, aggregate and contract around a post at the center of the well to form a cohesive tissue ring.(6,7) These rings can be cultured for several days prior to harvesting for mechanical, physiological, biochemical, or histological analysis. We have shown that these cell-derived tissue rings yield at 100-500 kPa ultimate tensile strength(8) which exceeds the value reported for other tissue engineered vascular constructs cultured for similar durations (<30 kPa).(9,10) Our results demonstrate that robust cell-derived vascular tissue ring generation can be achieved within a short time period, and offers the opportunity for direct and quantitative assessment of the contributions of cells and cell-derived matrix (CDM) to vascular tissue structure and function.  相似文献   

11.
In tissue engineering, bioreactors can be used to aid in the in vitro development of new tissue by providing biochemical and physical regulatory signals to cells and encouraging them to undergo differentiation and/or to produce extracellular matrix prior to in vivo implantation. This study examined the effect of short term flow perfusion bioreactor culture, prior to long‐term static culture, on human osteoblast cell distribution and osteogenesis within a collagen glycosaminoglycan (CG) scaffold for bone tissue engineering. Human fetal osteoblasts (hFOB 1.19) were seeded onto CG scaffolds and pre‐cultured for 6 days. Constructs were then placed into the bioreactor and exposed to 3 × 1 h bouts of steady flow (1 mL/min) separated by 7 h of no flow over a 24‐h period. The constructs were then cultured under static osteogenic conditions for up to 28 days. Results show that the bioreactor and static culture control groups displayed similar cell numbers and metabolic activity. Histologically, however, peripheral cell‐encapsulation was observed in the static controls, whereas, improved migration and homogenous cell distribution was seen in the bioreactor groups. Gene expression analysis showed that all osteogenic markers investigated displayed greater levels of expression in the bioreactor groups compared to static controls. While static groups showed increased mineral deposition; mechanical testing revealed that there was no difference in the compressive modulus between bioreactor and static groups. In conclusion, a flow perfusion bioreactor improved construct homogeneity by preventing peripheral encapsulation whilst also providing an enhanced osteogenic phenotype over static controls. Bioeng. 2011; 108:1203–1210. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
The use of bioreactors for cartilage tissue engineering has become increasingly important as traditional batch‐fed culture is not optimal for in vitro tissue growth. Most tissue engineering bioreactors rely on convection as the primary means to provide mass transfer; however, convective transport can also impart potentially unwanted and/or uncontrollable mechanical stimuli to the cells resident in the construct. The reliance on diffusive transport may not necessarily be ineffectual as previous studies have observed improved cartilaginous tissue growth when the constructs were cultured in elevated volumes of media. In this study, to approximate an infinite reservoir of media, we investigated the effect of continuous culture on cartilaginous tissue growth in vitro. Isolated bovine articular chondrocytes were seeded in high density, 3D culture on Millicell? filters. After two weeks of preculture, the constructs were cultivated with or without continuous media flow (5–10 μL/min) for a period of one week. Tissue engineered cartilage constructs grown under continuous media flow significantly accumulated more collagen and proteoglycans (increased by 50–70%). These changes were similar in magnitude to the reported effect of through‐thickness perfusion without the need for large volumetric flow rates (5–10μL/min as opposed to 240–800 μL/min). Additionally, tissues grown in the reactor displayed some evidence of the stratified morphology of native cartilage as well as containing stores of intracellular glycogen. Future studies will investigate the effect of long‐term continuous culture in terms of extracellular matrix accumulation and subsequent changes in mechanical function. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real‐time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48‐h culture period. Cells were uniformly dispersed within the 14.40 mm × 17.46 mm × 6.35 mm chamber. Cells suspended in 6.35‐mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
In the field of arterial vascular reconstructions there is an increasing need for functional small-diameter artificial grafts (inner diameter < 6mm). When autologous replacement vessels are not available, for example because of the bad condition of the vascular system in the patient, the surgeon has no other alternative than to implant a synthetic polymer-based vessel. After implantation the initial major problem concerning these vessels is the almost immediate occlusion, due to blood coagulation and platelet deposition, under the relatively low flow conditions. As the search for the perfect bio-inert polymer has not revealed a material with suitable properties for this application, improved performance of small-diameter artificial blood vessels is now being sought in the biological field. The poor blood-compatibility of an artificial vascular graft is not simply because of its coagulation-stimulating or platelet-activating properties, but more due to its inability to actively participate in the prevention of blood coagulation and platelet deposition. As these functions are naturally performed by endothelial cells, the utilization of these cells seems inevitable for the construction of a functional small-diameter artificial blood vessels. This review describes the current status of the use of endothelial cells to improve the performance of artificial vascular prostheses.  相似文献   

15.
Osteoarthritis is a severe socio-economical disease, for which a suitable treatment modality does not exist. Tissue engineering of cartilage transplants is the most promising method to treat focal cartilage defects. However, current culturing procedures do not yet meet the requirements for clinical implementation. This article presents a novel bioreactor device for the functional tissue engineering of articular cartilage which enables cyclic mechanical loading combined with medium perfusion over long periods of time, under controlled cultivation and stimulation conditions whilst ensuring system sterility. The closed bioreactor consists of a small, perfused, autoclavable, twin chamber culture device with a contactless actuator for mechanical loading. Uni-axial loading is guided by externally applied magnetic fields with real-time feedback-control from a platform load cell and an inductive proximity sensor. This precise measurement allows the development of the mechanical properties of the cultured tissue to be monitored in real-time. This is an essential step towards clinical implementation, as it allows accounting for differences in the culture procedure induced by patient-variability. This article describes, based on standard agarose hydrogels of 3 mm height and 10 mm diameter, the technical concept, implementation, scalability, reproducibility, precision, and the calibration procedures of the whole bioreactor instrument. Particular attention is given to the contactless loading system by which chondrocyte scaffolds can be compressed at defined loading frequencies and magnitudes, whilst maintaining an aseptic cultivation procedure. In a "proof of principle" experiment, chondrocyte seeded agarose gels were cultured for 21 days in the bioreactor system. Intermittent medium perfusion at a steady flow rate (0.5 mL/min) was applied. Sterility and cell viability (ds-DNA quantification and fluorometric live/dead staining) were preserved in the system. Flow induced shear stress stimulated sGAG (sulfated glycosaminoglycan) content (DMMB assay) after 21 days, which was confirmed by histological staining of Alcian blue and by immunostaining of Aggrecan. Experimental data on mechanotransduction and long-term studies on the beneficial effects of combined perfusion and different mechanical loading patterns on chondrocyte seeded scaffolds will be published separately.  相似文献   

16.
We engineered implantable small-diameter blood vessels based on ovine smooth muscle and endothelial cells embedded in fibrin gels. Cylindrical tissue constructs remodeled the fibrin matrix and exhibited considerable reactivity in response to receptor- and nonreceptor-mediated vasoconstrictors and dilators. Aprotinin, a protease inhibitor of fibrinolysis, was added at varying concentrations and affected the development and functionality of tissue-engineered blood vessels (TEVs) in a concentration-dependent manner. Interestingly, at moderate concentrations, aprotinin increased mechanical strength but decreased vascular reactivity, indicating a possible relationship between matrix degradation/remodeling, vasoreactivity, and mechanical properties. TEVs developed considerable mechanical strength to withstand interpositional implantation in jugular veins of lambs. Implanted TEVs integrated well with the native vessel and demonstrated patency and similar blood flow rates as the native vessels. At 15 wk postimplantation, TEVs exhibited remarkable matrix remodeling with production of collagen and elastin fibers and orientation of smooth muscle cells perpendicular to the direction of blood flow. Implanted vessels gained significant mechanical strength and reactivity that were comparable to those of native veins. Our work demonstrates that fibrin-based TEVs hold significant promise for treatment of vascular disease and as a biological model for studying vascular development and pathophysiology.  相似文献   

17.
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.  相似文献   

18.
随着人口老龄化问题的日益严重以及心血管疾病患病的增加,临床上对血管移植物的需求量也逐渐增大。利用涤纶和聚四氟乙烯制备大直径血管(>6mm)在临床上得到了广泛的应用,而小直径(< 6 mm)血管常因血栓和感染导致移植的失败,因此构建内皮细胞贴附的组织工程血管就显得至关重要。通过合成RGD修饰的海藻酸钠(RGD-alginate, RGD-ALG)以及甲基丙烯酸化的明胶(methacrylated gelatin,GelMA),利用氯化钙溶液溶解的普朗尼克F127作为牺牲材料,利用同轴打印制备出组织工程血管。通过选择不同直径的同轴打印喷嘴以及调节打印参数,可以制备出不同直径的组织工程血管。制备出的组织工程血管可以承受人生理状态下的血管压力,可以进行稳定的灌流培养,并且人脐静脉血管内皮细胞在通入组织工程血管中后可以稳定贴附在管壁上。  相似文献   

19.
Summary The availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any construct. Because the optimal source of cells should be autologous, the adaptation of existing methods for the isolation of all the vascular cell types present in a single and small biopsy sample, thus reducing patient’s morbidity, is a first step toward future clinical applications of any newly developed tissue-engineered blood vessel. This study describes such a cell-harvesting procedure from vein biopsy samples of canine and human origin. For this purpose, we combined preexisting mechanical methods for the isolation of the three vascular cell types: EC by scraping of the endothelium using a scalpel blade, vascular smooth muscle cells (VSMC), and perivascular fibroblasts according to the explant method. Once in culture, cells rapidly grew with the high level of enrichment. The morphological, phenotypical, and functional expected criteria were maintained: EC formed cobblestone colonies, expressed the von Willebrand factor, and incorporated acetylated low-density lipoprotein (LDL); VSMC were elongated and contracted when challenged by vasoactive agents; perivascular fibroblasts formed a mechanically resistant structure. Thus, we demonstrated that an appropriate combination of preexisting harvesting methods is suitable to isolate simultaneously the vascular cell types present in a single biopsy sample. Their functional characteristics indicated that they were suitable for the cellularization of synthetic prosthesis or the reconstruction of functional multicellular autologous organs by tissue engineering.  相似文献   

20.
Surgical treatment of vascular disease has become common, creating the need for a readily available, small-diameter vascular graft. However, the use of synthetic materials is limited to grafts larger than 5-6 mm because of the frequency of occlusion observed with smaller-diameter prosthetics. An alternative to synthetic materials would be a biomaterial that could be used in the design of a tissue-engineered graft. We demonstrate that a small-diameter (4 mm) graft constructed from a collagen biomaterial derived from the submucosa of the small intestine and type I bovine collagen has the potential to integrate into the host tissue and provide a scaffold for remodeling into a functional blood vessel. The results obtained using a rabbit arterial bypass model have shown excellent hemostasis and patency. Furthermore, within three months after implantation, the collagen grafts were remodeled into cellularized vessels that exhibited physiological activity in response to vasoactive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号