首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The twospotted spider mite, Tetranychus urticae Koch, is an important pest of ivy geranium and other ornamental plants. As a part of our long-term goal to develop an integrated crop management program for ivy geraniums, the focus of this study was to produce a reliable sampling method for T. urticae on this bedding plant. Within-plant mite distribution data from a greenhouse experiment were used to identify the young-fully-opened leaf as the sampling unit. We found that 53% of the mites on a plant are on the young-fully-opened leaves. On average 22, 37, and 41% of the leaves belonged to the young, young-fully-opened, and old leaf categories, respectively. We then developed a presence-absence sampling method for T. urticae in ivy geranium using generic Taylor's coefficients for this pest. We found the optimal binomial sample sizes for estimating populations of T. urticae at densities of between 0 and 3 mites/leaf to be quite large; therefore, we recommend the use of numerical sampling within this range of T. urticae densities. We also suggest that population estimates of T. urticae on ivy geranium be done based on mite density/unit area of greenhouse space, both for conventional greenhouse pest management, and for determining how many phytoseid predators to release when using biological control.  相似文献   

2.
The twospotted spider mite, Tetranychus urticae Koch, is an important pest of impatiens, a floricultural crop of increasing economic importance in the United States. The large amount of foliage on individual impatiens plants, the small size of mites, and their ability to quickly build high populations make a reliable sampling method essential when developing a pest management program. In our study, we were particularly interested in using spider mite counts as a basis for releasing biological control agents. The within-plant distribution of mites was established in greenhouse experiments and these data were used to identify the sampling unit. Leaves were divided into three zones according to location on the plant: inner, intermediate, and other. On average, 40, 33, and 27% of the leaves belonged to the inner, intermediate, and other leaf zones, respectively. However, because 60% of the mites consistently were found on the intermediate leaves, intermediate leaves were chosen as the sampling unit. These results lead to the development of a presence-absence sampling method for T. urticae by using Taylor coefficients generic for this pest. The accuracy of this method was verified against an independent data set. By determining numerical or binomial sample sizes for consistently estimating twospotted spider mite populations, growers will now be able to determine the number of predatory mites that should be released to control twospotted spider mites on impatiens.  相似文献   

3.
Abstract:  The spider mite Tetranychus urticae Koch has a broad range of host plants. However, the spider mite does not accept all plants to the same degree because of differences in nutritive and toxic constituents. Other factors, such as the induction of secondary metabolites, the morphology of a leaf surface and the presence of natural enemies, also play an important role in plant acceptance. We compared plants from various families in their degree of acceptance by the spider mite, to get an indication of the plant's direct defence. Glycine max (soybean), Humulus lupulus (hop), Laburnum anagyroides (golden chain) and Nicotiana tabacum (tobacco) were highly accepted by the spider mites. Different glandular hair densities among tobacco cultivars did not affect their suitability towards spider mites significantly. Solanum melalonga (eggplant), Robinia pseudo-acacia (black locust), Vigna unguiculata (cowpea) and Datura stramonium (thorn apple) were accepted by the spider mites to a lesser degree. Vitis vinifera (grapevine) was poorly accepted by the spider mite. It might be that the food quality of the leaves was not high enough to arrest the spider mites. Also, Capsicum annuum (sweet pepper) and especially Ginkgo biloba (ginkgo) were poorly accepted by the spider mite, probably because of the presence and concentration of certain of the secondary metabolites in the leaves. The spider mites accepted all the plants belonging to the Fabaceae for feeding, but those belonging to the Solanaceae showed a larger variance in spider mite acceptance varying from well accepted (tobacco) to poorly accepted (sweet pepper).  相似文献   

4.
Many phytophagous mites can attack strawberry plants, Fragaria x ananassa, among them the southern red mite, Oligonychus ilicis McGregor, and the two-spotted spider mite, Tetranychus urticae Koch. They are found together feeding on the same plant on the upper and underside of the leaves, respectively. Here we studied the choice for feeding sites of O. ilicis and T. urticae on strawberry plants. The first hypothesis tested whether the feeding site choice would be related to the fitness of the species. The second hypothesis dealt whether the feeding site would be determined by the presence of a heterospecific mite. We evaluated the preference, biology and reproductive success of O. ilicis and T. urticae on the under and upper side surface of strawberry leaves infested or not by the heterospecific. O. ilicis preferred to stay on the upper side surface while T. urticae preferred the underside. The preference for the leaf surface correlated with the reproductive success of the species (measured by the intrinsic growth rate). The choice pattern of feeding sites did not alter when the choice test was applied using sites previously infested by heterospecific. Although O. ilicis and T. urticae, apparently, do not interact directly for feeding sites, there is a chance that the first species induces defenses in strawberry plant enabling to reduce the fitness of the second species. The possibility of those species stay together on strawberry plant increases the damage capacity to the culture.  相似文献   

5.
Spider Mites Avoid Plants with Predators   总被引:1,自引:0,他引:1  
While searching for food, prey can use cues associated with their predators to select patches with a reduced predation risk. In many cases, odours indicate the presence of both food and predators. Spider mites are known to use odours to locate food and mates, but also to avoid interspecific competitors. We studied the response of the two-spotted spider mite, Tetranychus urticae, to cues associated with the presence of their predators, the phytoseiid Phytoseiulus persimilis. We found that the spider mites strongly avoid plants defended by this predator, but do not avoid plants with another predatory mite, Neoseiulus californicus. Since P. persimilis is commonly used in the greenhouse where our strain of T. urticae was collected and strains of this pest are known to adapt to greenhouse environments, we hypothesize that there has been selection on the pest to recognize its enemy. We further hypothesize that there has been no selection to recognize N. californicus, as it has not been used against two-spotted spider mites in the greenhouse where our spider mites were collected. We discuss the implications of avoidance of predation by spider mites and non-lethal effects of predators for biological control of this pest in greenhouses.  相似文献   

6.
The twospotted spider mite, Tetranychus urticae Koch, is a worldwide pest of numerous agronomic and horticultural plants. Sulfur fungicides are known to induce outbreaks of this pest on several crops, although mechanisms associated with sulfur-induced mite outbreaks are largely unknown. Studies were conducted during 2007-2009 in Oregon and Washington hop yards to evaluate the effect of timing of sulfur applications on T. urticae and key predators. In both regions, applications of sulfur made relatively late in the growing season (mid-June to mid-July) were associated with the greatest exacerbation of spider mite outbreaks, particularly in the upper canopy of the crop. The severity of mite outbreaks was closely associated with sulfur applications made during a relatively narrow time period coincident with the early exponential phase of spider mite increase and rapid host growth. A nonlinear model relating mean cumulative mite days during the time of sulfur sprays to the percent increase in total cumulative mite days (standardized to a nontreated plot) explained 58% of the variability observed in increased spider mite severity related to sulfur spray timing. Spatial patterns of spider mites in the Oregon plots indicated similar dispersal of motile stages of spider mites among leaves treated with sulfur versus nontreated leaves; however, in two of three years, eggs were less aggregated on leaves of sulfur-treated plants, pointing to enhanced dispersal. Apart from one experiment in Washington, relatively few predatory mites were observed during the course of these studies, and sulfur-induced mite outbreaks generally occurred irrespective of predatory mite abundance. Collectively, these studies indicate sulfur induces mite outbreaks through direct or indirect effects on T. urticae, mostly independent of predatory mite abundance or toxicity to these predators. Avoidance of exacerbation of spider mite outbreaks by sulfur sprays was achieved by carefully timing applications to periods of low spider mite abundance and slower host development, which is generally early to mid-spring for hop.  相似文献   

7.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

8.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

9.
叶螨(Acari:Tetranychidae)危害是造成玉米减产的重要原因之一,其中二斑叶螨Tetranychus urticae Koch是我国玉米Zea mays L.生产中的主要害螨之一.抗螨玉米品种的选育是有效防治叶螨的途径之一.本研究以我国广泛种植的玉米杂交种京科968及其母本京724、父本京92,先玉335...  相似文献   

10.
The use of a standardized beat sampling method for estimating spruce spider mite, Oligonychus ununguis (Jacobi) (Acari: Tetranychidae), densities on a widely used evergreen ornamental plant species, Juniperus chinensis variety 'Sargentii' A. Henry (Cupressaceae), was examined. There was a significant positive relationship between total spruce spider mite densities and spider mite densities from beat sampling on juniper. The slope and intercept of the relationship may be used by pest managers to predict total spider mite densities on plants from beat sample counts. Beat sampling dramatically underestimates the total number of spider mites on a foliage sample. The relationships between spruce spider mite feeding injury and spider mite density estimates from beat sampling juniper foliage and total spider mite counts on foliage were also examined. There was a significant positive relationship between spruce spider mite density as estimated from beat sampling and injury to the plants. There was a similar positive relationship between the total number of spruce spider mites and injury to the plants, suggesting that a pest manager could use beat sampling counts to estimate plant injury and related thresholds. These findings have important implications to decision-making for spruce spider mite control, especially as it relates to threshold levels and determining rates of predator releases. Further assessment of the effectiveness of beat and other sampling methods across multiple spider mite- host plant associations needs to be examined to enable pest managers to select sampling plans that are feasible and reliable.  相似文献   

11.
The effects of plant age and infestation level of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on visible plant damage, and the effect of plant age on spider mite population growth on impatiens, Impatiens wallerana Hook.f. (Ericales: Balsaminaceae), were determined by inoculating impatiens plants of three different ages with two densities of spider mites. Each plant was inoculated with either one adult female mite per three leaves or six leaves based on the average number of leaves on plants of each of the three age classes. Subsequently, leaf damage was correlated with mite-days (cumulative spider mite density) per leaf. The results showed that older aged plants exhibited greater damage than younger plants. Regression models of damage thresholds for each plant age suggest that monitoring for spider mites must be done periodically throughout the entire plant production cycle, but that more attention should be given toward the end of the cycle. Measurements of visible leaf damage were correlated with plant marketability. Specifically, the level of damage (proportion of damaged leaves per plant) at which plant marketability changes from a "premium" to a "discounted" category was 0.04-0.06. Thus, regression equations of the damage threshold could be used to estimate a cumulative spider mite density or mite-days equivalent to the economic threshold. Based on these equations, 5% leaf damage corresponds to 2.1, 1.51, and 1.25 mite-days for youngest, intermediate, and oldest plants, respectively. Because the damage threshold on impatiens was shown to be very low, the action threshold for biological control is essentially zero, and predators would need to be released as soon as damage is observed.  相似文献   

12.
Experiments were conducted to assess the damage of the glasshouse cucumber by twospotted spider mite, Tetranychus urticae Koch, and to investigate when the economic yield begins to decrease after T. urticae infestations. To assess the damage, dry matter partitioning in the cucumber plant was quantified and plant growth analyses were conducted at four different T. urticae infestation levels. T. urticae infestations decreased leaf productivity by reducing the total number of leaves per plant. Approximately 14% reductions of total leaf areas could result in significant yield loss. The decreased leaf productivity by T. urticae feeding caused biomass reductions and altered the pattern of dry matter partitioning in the plant; damaged plants accumulated more dry matter in the leaf, and partitioning of dry matter to fruits was hindered. The economic yield of cucumber began to significantly decrease as early as 4 wk after heavy mite infestations. This study also showed the seasonal differences in T. urticae-cucumber damage interactions among mite infestation levels.  相似文献   

13.
The efficacy of Neoseiulus californicus (a generalist predatory mite) for the biological control of Tetranychus urticae, was compared to release of Phytoseiulus persimilis (a specialist predatory mite) and an acaricide treatment in sweet pepper plants grown in greenhouse tunnels in a hot and arid climate. To ensure uniform pest populations, spider mites were spread on pepper plants in two seasons; a natural infestation occurred in one season. Predators were released prophylactically and curatively in separate tunnels when plants were artificially infested with spider mites, and at low and moderate spider mite populations when infestations occurred naturally. Although spider mite populations did not establish well the first year, fewer spider mites were recovered with release of N. californicus than with all other treatments. In the second year, spider mites established and the prophylactic release of N. californicus compared favorably with the acaricide-treated plants. In the course of monitoring arthropod populations, we observed a significant reduction in western flower thrips (Frankliniella occidentalis) populations in tunnels treated with N. californicus as compared with non-treated control tunnels. Our field trials validate results obtained from potted-plant experiments and confirm that N. californicus is a superior spider mite predator at high temperatures and low humidities.  相似文献   

14.
Efficacy of rosemary, Rosmarinus officinalis L., essential oil was assessed against twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), as well as effects on the tomato, Lycopersicum esculatum Mill., host plant and biocontrol agents. Laboratory bioassay results indicated that pure rosemary oil and EcoTrol (a rosemary oil-based pesticide) caused complete mortality of spider mites at concentrations that are not phytotoxic to the host plant. The predatory mite Phytoseiulus persimilis Athias-Henriot is less susceptible to rosemary oil and EcoTrol than twospotted spider mite both in the laboratory and the greenhouse. Rosemary oil repels spider mites and can affect oviposition behavior. Moreover, rosemary oil and rosemary oil-based pesticides are nonpersistent in the environment, and their lethal and sublethal effects fade within 1 or 2 d. EcoTrol is safe to tomato foliage, flowers, and fruit even at double the recommended label rate. A greenhouse trial indicated that a single application of EcoTrol at its recommended label rate could reduce a twospotted spider mite population by 52%. At that rate, EcoTrol did not cause any mortality in P. persimilis nor did it affect their eggs. In general, EcoTrol was found to be a suitable option for small-scale integrated pest management programs for controlling twospotted spider mites on greenhouse tomato plants.  相似文献   

15.
To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and two-spotted spider mites, Tetranychus urticae Koch in combination with the predator species Amblyseius swirskii Athias-Henriot. When spider mites infested plants prior to predator release, predatory mites were not capable of controlling spider mite populations in the absence of other pest species. A laboratory experiment showed that predators were hindered by the webbing of spider mites. In a greenhouse experiment, spider mite leaf damage was lower in the presence of thrips and predators than in the presence of whiteflies and predators, but damage was lowest in the presence of thrips, whiteflies and predators. Whitefly control was also improved in the presence of thrips. The lower levels of spider mite leaf damage probably resulted from (1) a strong numerical response of the predator (up to 50 times higher densities) when a second and third pest species were present in addition to spider mites, and (2) from A. swirskii attacking mobile spider mite stages outside or near the edges of the spider mite webbing. Interactions of spider mites with thrips and whiteflies might also result in suppression of spider mites. However, when predators were released prior to spider mite infestations in the absence of other pest species, but with pollen as food for the predators, we found increased suppression of spider mites with increased numbers of predators released, confirming the role of predators in spider mite control. Thus, our study provides evidence that diversity of pest species can enhance biological control through increased predator densities.  相似文献   

16.
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.  相似文献   

17.
Journal of Insect Behavior - Tetranychus urticae (the two-spotted spider mite) is a phytophagous agricultural pest that affects many economically important crops. Two-spotted spider mites are...  相似文献   

18.
The influence of plant nutrition on arthropod pests has often been studied by comparing plants provided suboptimal nutrients with those provided sufficient or luxurious nutrients, but such results have limited applicability to commercially produced crops because nitrogen (N) and phosphorus (P) are almost never limiting in greenhouse production. We conducted a series of experiments with ivy geranium, Pelargonium peltatum (L.) L'H?. ex Aiton 'Amethyst 96' to determine the response of twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), to six combinations of N (8 or 24 mM) and P (0.32, 0.64, or 1.28 mM) that reflected commercial production practices. All six combinations resulted in saleable plants when plants were free of spider mites, but tissue N and P concentrations among fertilizer combinations were different. On mite-infested plants, no difference in mite numbers or plant damage was found in response to N fertilization rates. Phosphorus had no effect on mite population level until week 8, at which time plants fertilized with 0.64 mM P had slightly more mites than plants fertilized with 0.32 mM. However, overall quality and dry weight of plants fertilized by 0.32 mM P was lower than that of 0.64 and 1.28 mM, which suggests that ivy geranium plants fertilized with the higher P rates may better compensate for mite feeding damage. Positive correlations were found between within-plant distribution of mites and the corresponding tissue N and P concentrations in three foliage strata, suggesting that tissue nutrient content may influence mite selection of feeding sites.  相似文献   

19.
Many herbivorous arthropods have been shown to possess learning capabilities, yet fitness effects of learning are largely unknown. In this paper, we test whether two-spotted spider mites (Tetranychus urticae) learn to distinguish food quality in choice tests, and whether this results in fitness benefits. Food consisted of cucumber plants with one of three degrees of feeding damage: undamaged (no mites), mildly damaged (infested by a mite strain adapted to tomato) and heavily damaged (infested by a mite strain adapted to cucumber). Mites were subjected to one choice test in a greenhouse and three sequential choice tests on leaf disks. Thereafter, individual mite performance was measured as oviposition rate over four days. In the course of the three small-scale choice tests, preference shifted towards less damaged food. The performance tests showed that learning was adaptive: mites learned to prefer the food type that yielded the higher oviposition rate. Interestingly, innate preferences in the greenhouse tests were close to those shown after learning in the small-scale tests. Given that both strains of mites had not experienced cucumber for several years, we hypothesize that the preference in the greenhouse was due to avoidance of mite odours rather than odours of damaged plants. Through its effect on foraging behaviour, adaptive learning may promote the evolution of host plant specialization in herbivorous arthropods.  相似文献   

20.
Spatial and temporal characteristics of host plants can influence the population biology of the herbivores feeding on them. In this study, I examined the effect of variation in host plant characteristics on the development of acaricide resistance in the two-spotted spider mite Tetranychus urticae, a widely distributed agricultural pest. This investigation examined the geographic variation in the degree of resistance to two new types of acaricide, pyridaben and fenpyroximate. From mortality tests at field-level concentrations of the acaricides, many populations collected from fruit trees and roses had a high frequency of resistant individuals for acaricides while almost all populations collected from herbaceous crops had low frequencies of resistant individuals. These results, combined with those from a previous allozyme study, indicate that patch size and persistence of host plants regulate the population structure of the mites including gene flow between populations and, by extension, the development of acaricide resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号