首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Methylated arginines are endogenous analogues of L-arginine, the substrate for nitric oxide (NO) synthase. Asymmetric dimethylarginine (ADMA) interferes with NO formation, causing endothelial dysfunction. ADMA is a predictor of cardiovascular events and mortality in humans. It is eliminated primarily by enzymatic activity of dimethylarginine dimethylaminohydrolase (DDAH).

Methodology/Principal Findings

We investigated whether human DDAH-1 (hDDAH-1) transgenicity protects from ischemic tissue damage in temporary middle cerebral artery occlusion (tMCAO) in mice. Infarct sizes did not significantly differ between hDDAH-1 transgenic (TG) mice and wild-type littermates (WT). As expected, ADMA plasma concentrations were significantly decreased, cerebral hDDAH expression and protein significantly increased in transgenic animals. Interestingly, neither brain tissue DDAH activity nor ADMA concentrations were different between TG and WT mice. In contrast, muscular DDAH activity was generally lower than in brain but significantly increased in TG mice.

Conclusion/Significance

Our study demonstrates that hDDAH-1 transgenic mice are not protected from ischemic cerebral tissue damage in tMCAO. This lack of protection is due to high basal cerebral DDAH activity, which is not further increasable by transgenic overexpression of DDAH.  相似文献   

2.
Mitochondrial fission in eukaryotes is mediated by protein complexes that encircle and divide mitochondrial tubules. In budding yeast, fission requires the membrane-anchored protein Fis1 and the dynamin-related GTPase Dnm1. Dnm1 is recruited to mitochondria via interactions with the adaptor proteins Caf4 and Mdv1, which bind directly to Fis1. Unlike Mdv1, a function for Caf4 in mitochondrial membrane scission has not been established. In this study, we demonstrate that Caf4 is a bona fide fission adaptor that assembles at sites of mitochondrial division. We also show that fission complexes may contain Caf4 alone or both Caf4 and Mdv1 without compromising fission function. Although there is a correspondence between Caf4 and Mdv1 expression levels and their contribution to fission, the two adaptor proteins are not equivalent. Rather, our functional and phylogenetic analyses indicate that Caf4 mitochondrial fission activity has diverged from that of Mdv1.  相似文献   

3.
4.
DYT1 dystonia is the most common hereditary form of primary torsion dystonia. This autosomal-dominant disorder is characterized by involuntary muscle contractions that cause sustained twisting and repetitive movements. It is caused by an in-frame deletion in the TOR1A gene, leading to the deletion of a glutamic acid residue in the torsinA protein. Heterozygous knock-in mice, which reproduce the genetic mutation in human patients, have abnormalities in synaptic transmission at the principal GABAergic neurons in the striatum, a brain structure that is involved in the execution and modulation of motor activity. However, whether this mutation affects the excitability of striatal GABAergic neurons has not been investigated in this animal model. Here, we examined the excitability of cultured striatal neurons obtained from heterozygous knock-in mice, using calcium imaging as indirect readout. Immunofluorescence revealed that more than 97% of these neurons are positive for a marker of GABAergic neurons, and that more than 92% are also positive for a marker of medium spiny neurons, indicating that these are mixed cultures of mostly medium spiny neurons and a few (~5%) GABAergic interneurons. When these neurons were depolarized by field stimulation, the calcium concentration in the dendrites increased rapidly and then decayed slowly. The amplitudes of calcium transients were larger in heterozygous neurons than in wild-type neurons, resulting in ~15% increase in cumulative calcium transients during a train of stimuli. However, there was no change in other parameters of calcium dynamics. Given that calcium dynamics reflect neuronal excitability, these results suggest that the mutation only slightly increases the excitability of striatal GABAergic neurons in DYT1 dystonia.  相似文献   

5.
Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/-) mice and wildtypes (WT). In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24%) in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.  相似文献   

6.
Mitochondria in eukaryotic cells are derived from bacteria in evolution. Like bacteria, mitochondria contain DNA with unmethylated CpG motifs and formyl peptides, both of which have recently been shown to be damage associated molecular patterns (DAMPs) and induce immune response and cell injury. Based on the facts that circulating mitochondrial DAMPs (mtDAMPs) are increased in the patients of trauma or burn injury who also have proteinuria, that mtDAMPs can activate immune cells which in turn secrete glomerular permeability factors, that renal intrinsic cells express a variety of DAMP receptors, and that mtDAMPs can directly increase endothelial cell permeability in vitro, we hypothesized that mtDAMPs may be novel circulating factors inducing proteinuria and kidney injury. We tested this hypothesis by directly injecting mtDAMPs into rodents and examining urinary protein and kidney histology. We prepared mtDAMP samples, including mitochondrial DNA (mtDNA) and mitochondrial debris (MTD), from rodent liver. In mice, injection of mtDNA for 20 μg/ml initial concentration in circulation (much higher than the clinical range), did not cause any renal manifestations. However, an increased dose leading to 45 μg/ml initial concentration in circulation resulted in a transient, slight increase in urinary albumin. In rats, MTD injection resulting in 450 μg/ml initial concentration of MTD protein in circulation, which was much higher than the clinical range, caused mild, transient proteinuria and lung lesions. Multiple injections of such large amount of either mtDNA or MTD into rodents on 3 consecutive days also failed in inducing proteinuria and kidney injury. In summary, clinical levels of circulating mtDAMPs do not induce proteinuria and clinically irrelevant high levels of mtDAMPs cause only a transient and slight increase in urinary protein in rodents, suggesting that circulating mtDAMPs may not be responsible for the proteinuria and kidney injury in patients with trauma, burn injury, and other diseases.  相似文献   

7.
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.  相似文献   

8.
Heme oxygenase-1 (HO-1) is a stress-responsive enzyme with potent anti-oxidant and anti-inflammatory activities. Previous studies have shown that systemic induction of HO-1 by chemical inducers reduces adiposity and improves insulin sensitivity. To dissect the specific function of HO-1 in adipose tissue, we generated transgenic mice with adipose HO-1 overexpression using the adipocyte-specific aP2 promoter. The transgenic (Tg) mice exhibit similar metabolic phenotype as wild type (WT) control under chow-fed condition. High fat diet (HFD) challenge significantly increased the body weights of WT and Tg mice to a similar extent. Likewise, HFD-induced glucose intolerance and insulin resistance were not much different between WT and Tg mice. Analysis of the adipose tissue gene expression revealed that the mRNA levels of adiponectin and interleukin-10 were significantly higher in chow diet-fed Tg mice as compared to WT counterparts, whereas HFD induced downregulation of adiponectin gene expression in both Tg and WT mice to a similar level. HFD-induced proinflammatory cytokine expression in adipose tissues were comparable between WT and transgenic mice. Nevertheless, immunohistochemistry and gene expression analysis showed that the number of infiltrating macrophages with preferential expression of M2 markers was significantly higher in the adipose tissue of obese Tg mice than WT mice. Further experiment demonstrated that myeloid cells from Tg mice expressed higher level of HO-1 and exhibited greater migration response toward chemoattractant in vitro. Collectively, these data indicate that HO-1 overexpression in adipocytes does not protect against HFD-induced obesity and the development of insulin resistance in mice.  相似文献   

9.
The role of brain corticotropin-releasing factor type 2 (CRF2) receptors in behavioral stress responses remains controversial. Conflicting findings suggest pro-stress, anti-stress or no effects of impeding CRF2 signaling. Previous studies have used antisauvagine-30 as a selective CRF2 antagonist. The present study tested the hypotheses that 1) potential anxiolytic-like actions of intracerebroventricular (i.c.v.) administration of antisauvagine-30 also are present in mice lacking CRF2 receptors and 2) potential anxiolytic-like effects of antisauvagine-30 are not shared by the more selective CRF2 antagonist astressin2-B. Cannulated, male CRF2 receptor knockout (n = 22) and wildtype littermate mice (n = 21) backcrossed onto a C57BL/6J genetic background were tested in the marble burying, elevated plus-maze, and shock-induced freezing tests following pretreatment (i.c.v.) with vehicle, antisauvagine-30 or astressin2-B. Antisauvagine-30 reduced shock-induced freezing equally in wildtype and CRF2 knockout mice. In contrast, neither astressin2-B nor CRF2 genotype influenced shock-induced freezing. Neither CRF antagonist nor CRF2 genotype influenced anxiety-like behavior in the plus-maze or marble burying tests. A literature review showed that the typical antisauvagine-30 concentration infused in previous intracranial studies (∼1 mM) was 3 orders greater than its IC50 to block CRF1-mediated cAMP responses and 4 orders greater than its binding constants (Kd, Ki) for CRF1 receptors. Thus, increasing, previously used doses of antisauvagine-30 also exert non-CRF2-mediated effects, perhaps via CRF1. The results do not support the hypothesis that brain CRF2 receptors tonically promote anxiogenic-like behavior. Utilization of CRF2 antagonists, such as astressin2-B, at doses that are more subtype-selective, can better clarify the significance of brain CRF2 systems in stress-related behavior.  相似文献   

10.
Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses, increasing a potential public health risk. The virucidal properties of wipes with a singlet-oxygen-generating immobilized photosensitizer (IPS) coating were compared to those of similar but uncoated wipes (non-IPS) and of commonly used viscose wipes. Wipes were spiked with hNoV GI.4 and GII.4, murine norovirus 1 (MNV-1), human adenovirus type 5 (hAdV-5), and influenza virus H1N1 to study viral persistence. We also determined residual and transferred virus proportions on steel carriers after successively wiping a contaminated and an uncontaminated steel carrier. On IPS wipes only, influenza viruses were promptly inactivated with a 5-log10 reduction. D values of infectious MNV-1 and hAdV-5 were 8.7 and 7.0 h on IPS wipes, 11.6 and 9.3 h on non-IPS wipes, and 10.2 and 8.2 h on viscose wipes, respectively. Independently of the type of wipe, dry cleaning removed, or drastically reduced, initial spot contamination of hNoV on surfaces. All wipes transferred hNoV to an uncontaminated carrier; however, the risk of continued transmission by reuse of wipes after 6 and 24 h was limited for all viruses. We conclude that cleaning wet spots with dry wipes efficiently reduced spot contamination on surfaces but that cross-contamination with noroviruses by wiping may result in an increased public health risk at high initial virus loads. For influenza virus, IPS wipes present an efficient one-step procedure for cleaning and disinfecting contaminated surfaces.  相似文献   

11.
Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs.  相似文献   

12.

Background

Besides being responsible for energy production in the cell, mitochondria are central players in apoptosis as well as the main source of harmful reactive oxygen species. Therefore, it can be hypothesised that sequence variation in the mitochondrial genome is a contributing factor to the etiology of diseases related to these different cellular events, including cancer. The aim of the present study was to assess the frequency of haplogroups and polymorphisms in the control region (CR) of mitochondrial DNA of peripheral blood mononuclear cells from patients with prostate carcinoma (n = 304) versus patients screened for prostate disease but found to be negative for cancer on biopsy (n = 278) in a Middle European population.

Methodology/Principal Findings

The nine major European haplogroups and the CR polymorphisms were identified by means of primer extension analysis and DNA sequencing, respectively. We found that mitochondrial haplogroup frequencies and CR polymorphisms do not differ significantly between patients with or without prostate cancer, implying no impact of inherited mitochondrial DNA variation on predisposition to prostate carcinoma in a Middle European population.

Conclusions/Significance

Our results contrast with a recent report claiming an association between mtDNA haplogroup U and prostate cancer in a North American population of caucasian descent.  相似文献   

13.
Humoral immunity plays an important role in controlling dengue virus (DENV) infection. Antibodies (Abs) developed during primary infection protect against subsequent infection with the same dengue serotype, but can enhance disease following secondary infection with a heterologous serotype. A DENV virion has two surface proteins, envelope protein E and (pre)-membrane protein (pr)M, and inefficient cleavage of the prM protein during maturation of progeny virions leads to the secretion of immature and partially immature particles. Interestingly, we and others found that historically regarded non-infectious prM-containing DENV particles can become highly infectious in the presence of E- and prM-Abs. Accordingly, we hypothesized that these virions contribute to the exacerbation of disease during secondary infection. Here, we tested this hypothesis and investigated the ability of acute sera of 30 DENV2-infected patients with different grades of disease severity, to bind, neutralize and/or enhance immature DENV2. We found that a significant fraction of serum Abs bind to the prM protein and to immature virions, but we observed no significant difference between the disease severity groups. Furthermore, functional analysis of the Abs did not underscore any specific correlation between the neutralizing/enhancing activity towards immature DENV2 and the development of more severe disease. Based on our analysis of acute sera, we conclude that Abs binding to immature virions are not a discriminating factor in dengue pathogenesis.  相似文献   

14.
In cardiac muscle, the release of calcium ions from the sarcoplasmic reticulum through ryanodine receptor ion channels (RyR2s) leads to muscle contraction. RyR2 is negatively regulated by calmodulin (CaM) and by phosphorylation of Ca2+/CaM-dependent protein kinase II (CaMKII). Substitution of three amino acid residues in the CaM binding domain of RyR2 (RyR2-W3587A/L3591D/F3603A, RyR2ADA) impairs inhibition of RyR2 by CaM and results in cardiac hypertrophy and early death of mice carrying the RyR2ADA mutation. To test the cellular function of CaMKII in cardiac hypertrophy, mutant mice were crossed with mice expressing the CaMKII inhibitory AC3-I peptide or the control AC3-C peptide in the myocardium. Inhibition of CaMKII by AC3-I modestly reduced CaMKII-dependent phosphorylation of RyR2 at Ser-2815 and markedly reduced CaMKII-dependent phosphorylation of SERCA2a regulatory subunit phospholamban at Thr-17. However the average life span and heart-to-body weight ratio of Ryr2ADA/ADA mice expressing the inhibitory peptide were not altered compared to control mice. In Ryr2ADA/ADA homozygous mice, AC3-I did not alter cardiac morphology, enhance cardiac function, improve sarcoplasmic reticulum Ca2+ handling, or suppress the expression of genes implicated in cardiac remodeling. The results suggest that CaMKII was not required for the rapid development of cardiac hypertrophy in Ryr2ADA/ADA mice.  相似文献   

15.
Wound healing is a complex biological process involving the interaction of many cell types to replace lost or damaged tissue. Although the biology of wound healing has been extensively investigated, few studies have focused on the role of mast cells. In this study, we investigated the possible role of mast cells in wound healing by analyzing aspects of cutaneous excisional wound healing in three types of genetically mast cell-deficient mice. We found that C57BL/6-KitW-sh/W-sh, WBB6F1-KitW/W-v, and Cpa3-Cre; Mcl-1fl/fl mice re-epithelialized splinted excisional skin wounds at rates very similar to those in the corresponding wild type or control mice. Furthermore, at the time of closure, scars were similar in the genetically mast cell-deficient mice and the corresponding wild type or control mice in both quantity of collagen deposition and maturity of collagen fibers, as evaluated by Masson’s Trichrome and Picro-Sirius red staining. These data indicate that mast cells do not play a significant non-redundant role in these features of the healing of splinted full thickness excisional cutaneous wounds in mice.  相似文献   

16.

(1) Aim/Hypothesis

Recent studies indicate that tyrosine kinase inhibitors, including imatinib, can reverse hyperglycemia in non-obese diabetic (NOD) mice, a model of type 1 diabetes (T1D). Imatinib inhibits c-Abl, c-Kit, and PDGFRs. Next-generation tyrosine kinase inhibitors for T1D treatment should maintain activities required for efficacy while sparing inhibition of targets that might otherwise lead to adverse events. In this study, we investigated the contribution of c-Kit inhibition by imatinib in reversal of hyperglycemia in NOD mice.

(2) Methods

The T670I mutation in c-Kit, which confers imatinib resistance, was engineered into the mouse genome and bred onto the NOD background. Hematopoietic stem cells (HSCs) from NOD.c-KitT670I mice and NOD.c-Kitwt littermates were expanded in the presence or absence of imatinib to verify imatinib resistance of the c-KitT670I allele. Diabetic mice were treated with imatinib at the onset of hyperglycemia for three weeks, and blood glucose was monitored.

(3 )Results

In vitro expansion of HSCs from NOD.c-Kitwt mice was sensitive to imatinib, while expansion of HSCs from NOD.c-KitT670I mice was insensitive to imatinib. However, in vivo treatment with imatinib lowered blood glucose levels in both strains of mice.

(4) Conclusions/Interpretation

The HSC experiment confirmed that, in NOD.c-KitT670I mice, c-Kit is resistant to imatinib. As both NOD.c-KitT670I and NOD.c-Kitwt mice responded comparably to imatinib, c-Kit inhibition does not substantially contribute to the efficacy of imatinib in T1D. Thus, we conclude that inhibition of c-Kit is not required in next-generation tyrosine kinase inhibitors for T1D treatment, and may be selected against to improve the safety profile.  相似文献   

17.
Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1f/f mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.  相似文献   

18.
19.
In cells, such as neurones and immune cells, mitochondria can form dynamic and extensive networks that change over the minute timescale. In contrast, mitochondria in adult mammalian skeletal muscle fibres show little motility over several hours. Here, we use a novel three channelled microflow device, the multifunctional pipette, to test whether mitochondria in mouse skeletal muscle connect to each other. The central channel in the pipette delivers compounds to a restricted region of the sarcolemma, typically 30 µm in diameter. Two channels on either side of the central channel use suction to create a hydrodynamically confined flow zone and remove compounds completely from the bulk solution to internal waste compartments. Compounds were delivered locally to the end or side of single adult mouse skeletal muscle fibres to test whether changes in mitochondrial membrane potential were transmitted to more distant located mitochondria. Mitochondrial membrane potential was monitored with tetramethylrhodamine ethyl ester (TMRE). Cytosolic free [Ca2+] was monitored with fluo-3. A pulse of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 100 µM) applied to a small area of the muscle fibre (30 µm in diameter) produced a rapid decrease in the mitochondrial TMRE signal (indicative of depolarization) to 38% of its initial value. After washout of FCCP, the TMRE signal partially recovered. At distances greater than 50 µm away from the site of FCCP application, the mitochondrial TMRE signal was unchanged. Similar results were observed when two sites along the fibre were pulsed sequentially with FCCP. After a pulse of FCCP, cytosolic [Ca2+] was unchanged and fibres contracted in response to electrical stimulation. In conclusion, our results indicate that extensive networks of interconnected mitochondria do not exist in skeletal muscle. Furthermore, the limited and reversible effects of targeted FCCP application with the multifunctional pipette highlight its advantages over bulk application of compounds to isolated cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号